

# **NTN corporation**

# **CONSTANT VELOCITY JOINTS** for industrial machines

# CAT. No. 5603-V/E



#### Warranty

NTN warrants, to the original purchaser only, that the delivered product which is the subject of this sale (a) will conform to drawings and specifications mutually established in writing as applicable to the contract, and (b) be free from defects in material or fabrication. The duration of this warranty is one year from date of delivery. If the buyer discovers within this period a failure of the product to conform to drawings or specifications, or a defect in material or fabrication, it must promptly notify NTN in writing. In no event shall such notification be received by NTN later than 13 months from the date of delivery. Within a reasonable time after such notification, NTN will, at its option, (a) correct any failure of the product to conform to drawings, specifications or any defect in material or workmanship, with either replacement or repair of the product, or (b) refund, in part or in whole, the purchase price. Such replacement and repair, excluding charges for labor, is at NTN's expense. All warranty service will be performed at service centers designated by NTN. These remedies are the purchaser's <u>exclusive</u> remedies for breach of warranty.

NTN does not warrant (a) any product, components or parts not manufactured by NTN, (b) defects caused by failure to provide a suitable installation environment for the product, (c) damage caused by use of the product for purposes other than those for which it was designed, (d) damage caused by disasters such as fire, flood, wind, and lightning, (e) damage caused by unauthorized attachments or modification, (f) damage during shipment, or (g) any other abuse or misuse by the purchaser.

#### THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no case shall NTN be liable for any special, incidental, or consequential damages based upon breach of warranty, breach of contract, negligence, strict tort, or any other legal theory, and in no case shall total liability of NTN exceed the purchase price of the part upon which such liability is based. Such damages include, but are not limited to, loss of profits, loss of savings or revenue, loss of use of the product or any associated equipment, cost of capital, cost of any substitute equipment, facilities or services, downtime, the claims of third parties including customers, and injury to property. Some states do not allow limits on warranties, or on remedies for breach in certain transactions. In such states, the limits in this paragraph and in paragraph (2) shall apply to the extent allowable under case law and statutes in such states.

Any action for breach of warranty or any other legal theory must be commenced within 15 months following delivery of the goods.

Unless modified in a writing signed by both parties, this agreement is understood to be the complete and exclusive agreement between the parties, superceding all prior agreements, oral or written, and all other communications between the parties relating to the subject matter of this agreement. No employee of **NTN** or any other party is authorized to make any warranty in addition to those made in this agreement.

This agreement allocates the risks of product failure between **NTN** and the purchaser. This allocation is recognized by both parties and is reflected in the price of the goods. The purchaser acknowledges that it has read this agreement, understands it, and is bound by its terms.

© NTN Corporation. 2005

Although care has been taken to assure the accuracy of the data compiled in this catalog, **NTN** does not assume any liability to any company or person for errors or omissions.

# **NTN Constant Velocity Joints**

for Industrial Applications

|         | Types and Features       | P 2~ |
|---------|--------------------------|------|
| Ou      | Type Selection Flowchart | P 3~ |
| Outline | Structure                | P 4~ |
|         | Joint Selection          | P12~ |

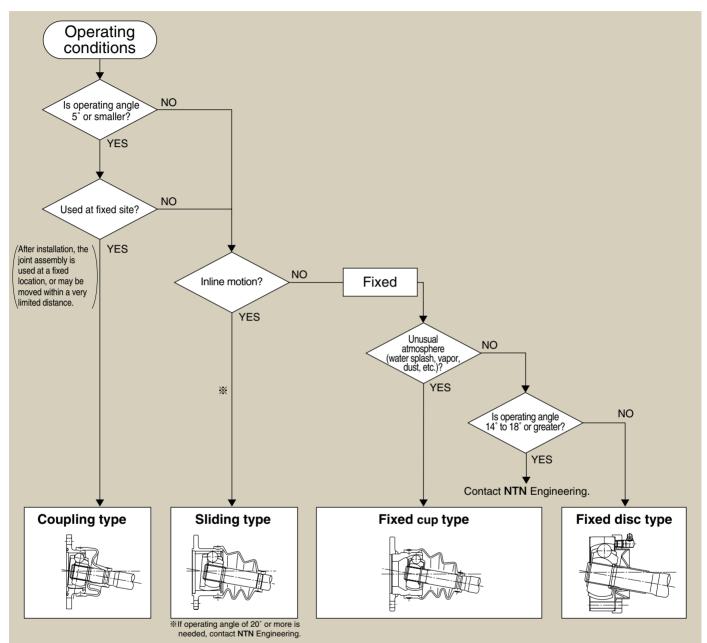
| D         | Fixed Disc Type | P23~ |
|-----------|-----------------|------|
| Dim       |                 |      |
| imensions | Fixed Cup Type  | P29~ |
| ion       |                 |      |
|           | Sliding Type    | P33~ |
| Table     |                 |      |
| (J        | Coupling Type   | P39~ |
|           |                 | 1.00 |

| Accesories                            | P44~ |
|---------------------------------------|------|
|                                       |      |
| Diagrams of Applications              | P48~ |
|                                       |      |
| Usage and Handling                    | P50~ |
|                                       |      |
| Service Conditions Confirmation Sheet | P61~ |

www.alacam.com.tr

### **Types and Features**

- Rotational speed can be transmitted at constant velocity
- Greater torque capacity
- Long service life and high reliability
- High transmission efficiency


- Low secondary moment
- Smooth and quiet rotation
- Easy handling, with long lubrication life requiring infrequent re-rubrication

| Variety          | Туре                                          |  | CVJ number              | Max. allowable operating angle      | Features                                                                            |
|------------------|-----------------------------------------------|--|-------------------------|-------------------------------------|-------------------------------------------------------------------------------------|
| Fixed type       | Disc type                                     |  | BJ75D–BJ300D            | 14° to 18°                          | Capable of high speed operation.<br>No need for intermediate slide<br>spline shaft. |
|                  | Cup type                                      |  | BJ75C–BJ225C            | 25°                                 | Greater operating angle.<br>Excellent sealing.                                      |
| Sliding<br>type  | Elanga tura                                   |  | possible                | Expansion within joint is possible. |                                                                                     |
| Slid<br>tyl      | Flange type                                   |  | DOJ225F–DOJ625F         | 8° to 10°                           | Low sliding friction (expansion friction).                                          |
| Coupling<br>type | Short shaft<br>series<br>Long shaft<br>series |  | BC68–BC200 <sup>Ø</sup> | 5°                                  | No alignment is needed.<br>Easy installation.                                       |

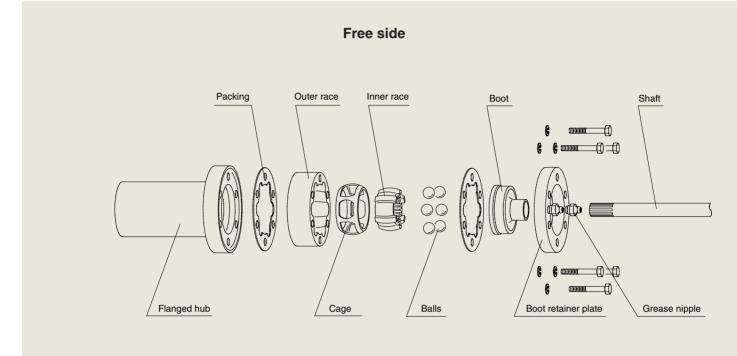
• The maximum allowable operating angle is limited by a boot, as well as the RPM and operating conditions of the CVJ assembly.

 The maximum allowable operating angle is infinited by a boot, as well as the first in and operating conditions of the over assembly.
 Upon request from the user, larger sizes can be designed and manufactured. Contact NTN Engineering.
 Remarks: The NTN constant velocity joint range includes, in addition to those listed here, the bell type CVJs used for drive shafts of automobiles (passenger cars, trucks), construction vehicles and special vehicles, and the NTN proprietary TRI-BALL joint that features unique structure and functions.

### **Type Selection Flowchart**



Remarks: In principle, CVJ type selection based on operating conditions should be in accordance with the flowchart above. However, selection flow can vary depending on the operating conditions not listed here. If this problem occurs, contact NTN Engineering.


Applications

| Coupling type                                                                                                                                                                                                                             | Sliding type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fixed cup/drum type                                                                                                                                                                                                                                                                                                                                                                                                      | Fixed disc type                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To compensate for shaft offset<br>with general industrial plant<br>machinery.<br>Connecting shafts of motors on<br>reducer, neck pinion, pump,<br>blower, compressor, hearth roller,<br>conveyor, refiner, crane, hydraulic<br>unit, etc. | Drive shafts of work rolls, pinch<br>rolls, tension reels in rolling mill<br>(steel making machinery).<br>Drive shafts of calender rolls<br>(paper making machinery) and of<br>other general industrial machines<br>(in areas where expansion is<br>needed during driving).<br>Drive shafts of automobiles<br>(passenger cars, trucks) and<br>special vehicles.<br>Hydraulic pump drive shafts of<br>steel making machinery and<br>chemical machinery.<br>Hydraulic pump drive shafts of<br>construction machinery. | Hydraulic pump drive shafts of<br>truck mixers.<br>Drive shafts of hygiene, food<br>processing and packaging<br>machines.<br>Other general industrial plant<br>machinery (where larger<br>operating angle is needed).<br>Tiller drive shafts of agricultural<br>tractors.<br>Drive shafts of machine tools and<br>printing presses.<br>Other general industrial machines<br>(where larger operating angle is<br>needed). | Drive shafts of steel making<br>machinery, paper making<br>machinery, printing machinery,<br>unloading/transportation<br>machinery, textile machinery,<br>chemical machinery, machine<br>tools and other general industrial<br>machines. |

www.alacam.com.tr

### Structure

### **Fixed Disc Type**



#### Features

#### Greater allowable operating angle

Though varying depending on the CVJ size and intended RPM, the maximum allowable operating angle of this type of joint is  $18^{\circ}$  with boot.

#### No slide splines are needed for the intermediate shaft

The intermediate shaft does not need slide splines since the axial expansion and installation mounting distance adjustment are achieved by the sliding splines of the inner race and shaft at the free side.

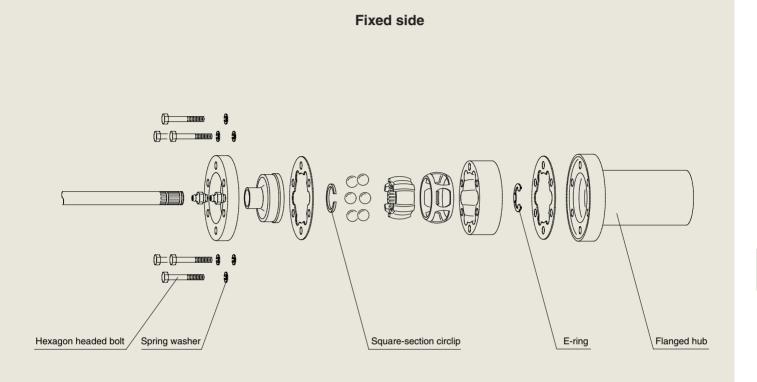
#### Shorter shaft length

The intermediate shaft can be designed to be much shorter since it does not need slide splines.

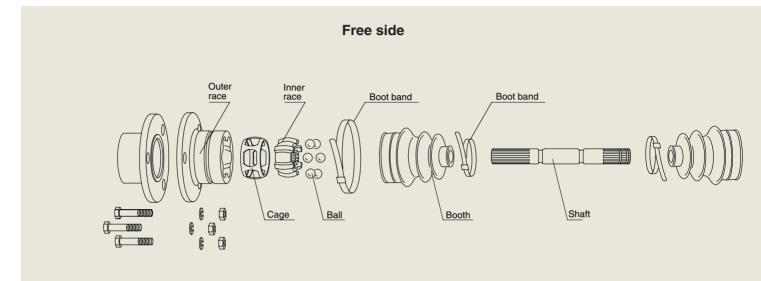
#### Capable of high-speed rotation

The solid shafts for high-speed joints have been precisionmachined and the steel pipe shafts have been dynamically balance.

#### Higher level of safety


A cylindrical outside surface means that while handling, the fingers of worker are not pinched with the yoke.

#### **Remarks:**


- 1. If the maximum allowable operating angle is exceeded, use a cup type joint.
- If this type of application is unavoidable, use a sliding type joint, or combine a fixed disc type joint with a slide type joint. For types and their combination, contact NTN Engineering.
- 3. **The disc type joint** is not fully sealed. We recommend that a cup or coupling type joint be used in locations subject to water splash.
- 4. Certain applications may need much larger axial expansion. To cope with such a need, we can supply a joint with intermediate slide splines. Contact **NTN** Engineering.

#### CAUTION

1. The free side CVJ can come off the splined shaft. Be very careful when handling it.



### **Fixed Cup Type**



### Features

#### Greater allowable operating angle

The maximum allowable operating angle with the CVJ proper is  $42^\circ\!.$ 

Though varying depending on the intended RPM, the maximum allowable operating angle of the joint equipped with a boot is 25° at dynamic state, and 38° at static state.

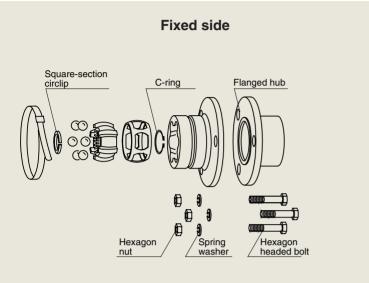
#### Superb sealing, and lubrication-free

Being sealed with bellows type boots, the CVJs can be used in environments where they may be frequently subjected to water splash, humidity and dust.

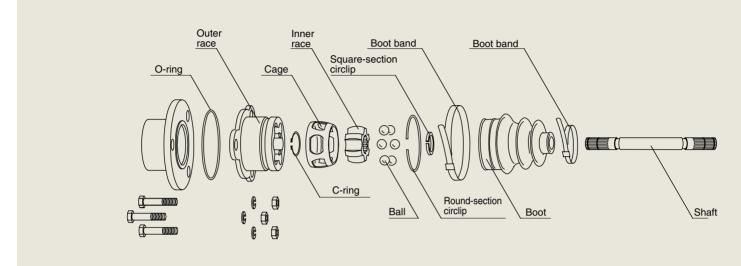
#### **Greater expansion**

The CVJs with intermediate slide spline shaft offer greater axial expansion.

#### Easy installation and removal


The CVJ proper is secured to the flange hub with through bolts. Thus, the joint can be readily installed or removed.

#### **Remarks:**


- This type is not suitable for use under a situation where an expansion motion occurs while the joint is revolving. If this type of application is unavoidable, use a sliding type joint, or combine a fixed cup type joint with a sliding type joint. For types and their combination, contact NTN Engineering.
- Consider use of a coupling type joint when the joint assembly is employed for high speed application with a smaller operating angle.

#### CAUTION

1. The intermediate splined shaft of CLT and CLFT series can come out of position. Be very careful when handling it.



### **Sliding Type**



#### Features

#### Expansion is possible within CVJ

The ball tracks on the outer race are parallel with the axis. Therefore, relative axial expansion between the inner ring and outer ring is possible while transmitting power and providing an operating angle.

#### Low sliding friction ensures smooth expansion

Expansion within the CVJ is achieved by a rolling motion of the balls, which contributes to very small sliding friction (expansion-induced friction). As a result, the joint assembly can smoothly plunge even when torque is applied.

The sliding friction of this arrangement is greatly reduced as compared with generic slide spline shaft. (See **Fig. 1**.)

#### Axial vibration can be absorbed

Because of the smaller sliding friction, axial vibration can be easily absorbed as compared with the slide spline arrangement.

#### No slide splines are needed for the intermediate shaft

The intermediate shaft does not need slide splines since the axial expansion and installation mounting distance adjustment are achieved by the structure inside the CVJs.

#### Easy installation

Both axial expansion and operating angle definition (20° for smaller size, 8° to 10° for larger size) can be achieved simultaneously. Therefore, this type of joint can accommodate a larger length variation, allowing easy installation.

#### Freedom for wide variety of design

The CVJ assembly can be designed to best suit the user's requirements in terms of torque capacity, expansion and installation system.

#### **Remarks:**

- For the best operation of a sliding type joint, the operating angleexpansion correlation, operating method and installation/removal method should be considered. For details, contact NTN Engineering.
- 2. If much larger axial expansion is needed, contact NTN Engineering.
- Some large size CVJs are capable of allowable maximum operating angle of 15°.
- 4. If the user wants to use the sliding type joint assembly in a vertical position, contact **NTN** Engineering.

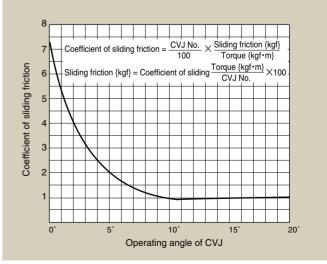
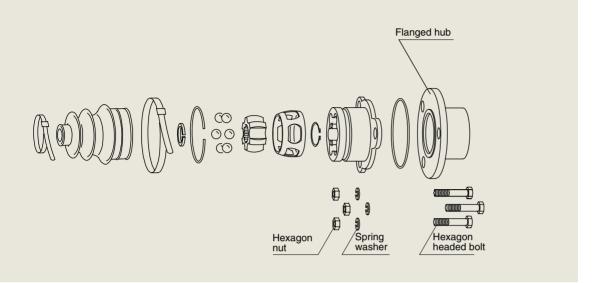




Fig. 1 Sliding friction



### **Coupling Type**



#### Features

#### No alignment work is necessary.

The offset across both shafts when the coupling is installed is 3.5 to 11.5 mm in the case of short shaft series joints (see Fig. 1). The long shaft series joints offer much larger offset (see Fig. 3).

The maximum crossed angle between two shafts is  $5^{\circ}$ . Furthermore, this type of joint allows inline expansion. As a result, time-consuming alignment work is eliminated.

#### Low sliding friction ensures smooth expansion.

The ball tracks on the outer race are parallel with the axis. Therefore, axial expansion within the CVJs is possible.

Expansion within the joints is achieved by rolling motion of the balls, which contributes to very small sliding friction (expansioninduced friction). As a result, axial vibration can be readily absorbed as compared with generic slide spline arrangement.

# Light-weight and compact arrangement that contributes to smaller moment of inertia.

The couplings are relatively small. Also, when a long intermediate shaft is needed, the middle portion of the shaft is composed of steel pipe. This light-weight configuration contributes to smaller moment of inertia, resulting in lower starting/braking torque.

#### **Easy installation**

Both flanged hubs are installed to the mating shafts. Then, the couplings are fastened to flanged hubs with bolts.

Since the couplings can be separated from the flanged hubs, the couplings can be fastened after installing a machine in position. Furthermore, installation work is very easy thanks to a larger allowable offset and crossed angle of the couplings.

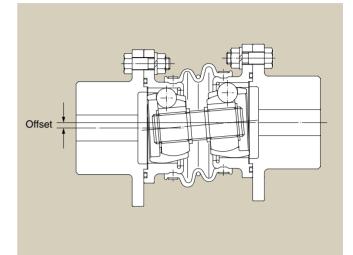
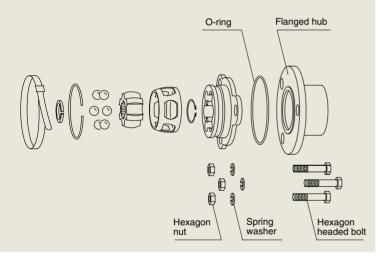
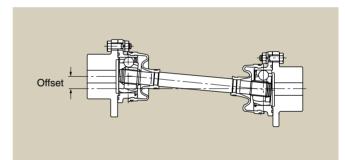
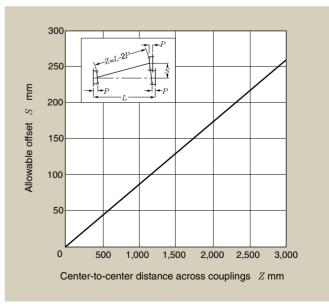



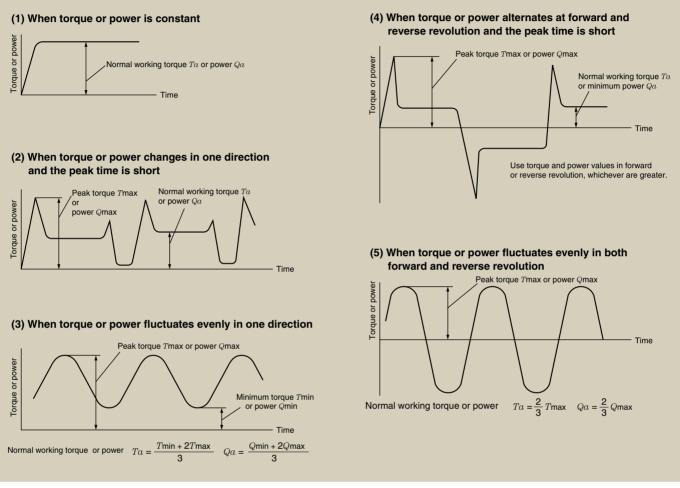

Fig. 1 Short shaft series

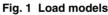


#### **Remarks:**

- 1. If larger axial expansion is needed, consider sliding type joints.
- 2. If the user wants to use the sliding type joint assembly in a vertical position, contact NTN Engineering.



Fig. 2 Long shaft series




### **Joint Selection**

#### 1. Selection Based on Service Life

1.1 By referring to the load models in Fig. 1, determine normal working torque Ta {kgf·m} or power Qa {kW}.





**1.2** Using the expression below, determine equivalent working torque *Ta* {kgf•m} or equivalent working transmission power Qa {kW}.

$$Te = \frac{K_1 \cdot K_2}{K_3} \cdot Ta$$
 or  $Qe = \frac{K_1 \cdot K_2}{K_3} \cdot Qa$ 

where

- K1: Machine factor (Table 1)
- K2: Operating time factor (Fig. 2, Fig. 4, Fig. 6)
- K3: Operating angle factor (Fig. 3, Fig. 5, Fig. 7)

#### Table 1 Machine factor K<sub>1</sub>

|                | Machine used                                                                                                                |                    |      |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|------|--|--|
| Motor          | Electric motor, turbine                                                                                                     |                    | 1    |  |  |
|                | Gasoline engine                                                                                                             | 4-cylinder or over | 1.25 |  |  |
|                | Gasoline engine                                                                                                             | 3-cylinder or less | 1.5  |  |  |
|                | Diesel engine                                                                                                               | 4-cylinder or over | 2    |  |  |
|                |                                                                                                                             | 3-cylinder or less | 3    |  |  |
| nachine        | Machine developing strong vibration<br>or impact<br>(crusher, screening machine, etc.)                                      |                    | 3    |  |  |
| Driven machine | Machine running continuously at a constant<br>speed and developing minor vibration<br>(storage/drainage pump, blower, etc.) |                    | 1.5  |  |  |

Use the factor with the motor or driven machine, whichever is greater.

The joints may be broken by the twisting resonance, when they are directly coupled to reciprocating engines or plunger pumps. Use these configurations after checking the resonance RPM of the twisting vibration for the driving mechanism.

Fixed Disc/Cup Type

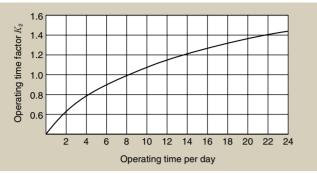



Fig. 2 Operating time factor  $K_2$ 

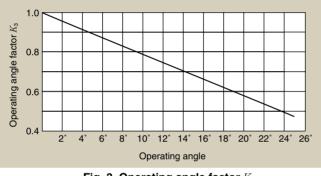
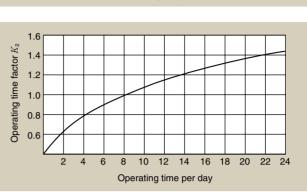




Fig. 3 Operating angle factor K<sub>3</sub>



**Sliding Type** 

Fig. 4 Operating time factor K<sub>2</sub>

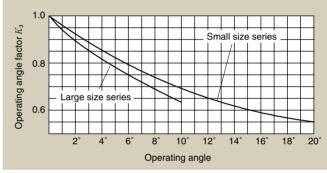



Fig. 5 Operating angle factor K<sub>3</sub>

Coupling Type

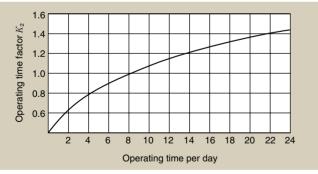



Fig. 6 Operating time factor K<sub>2</sub>

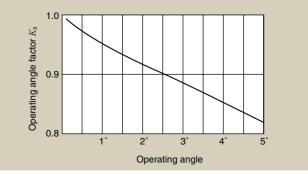
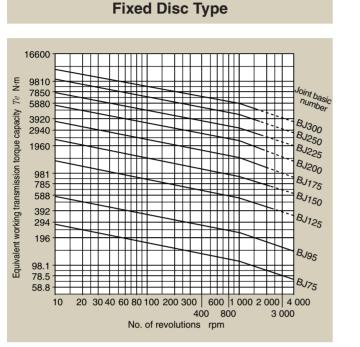
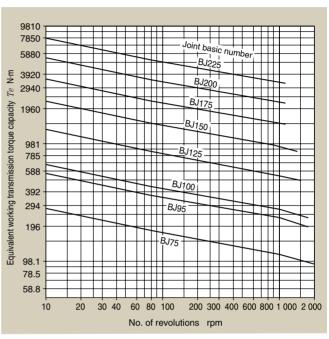
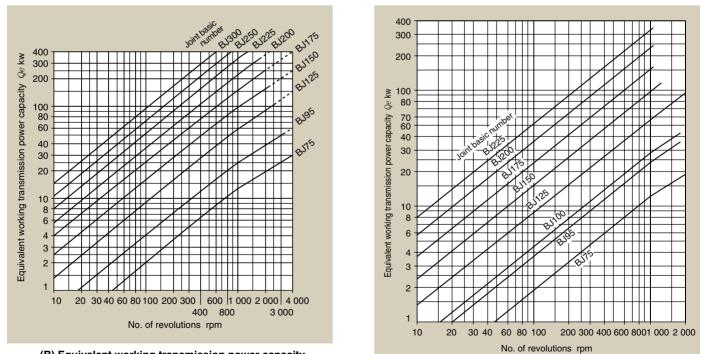





Fig. 7 Operating angle factor K<sub>3</sub>

**1.3** By referring to the equivalent working transmission torque or power graph in **Fig. 8**, find a CVJ basic number whose capacity at the operating RPM is greater than the equivalent working torque *Te* or equivalent working transmission power *Qe* determined in 1.2.

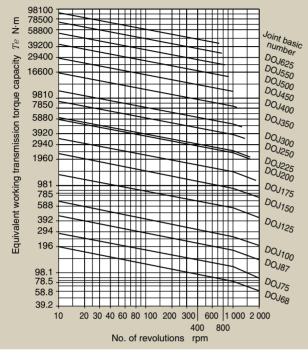



(A) Equivalent working transmission torque capacity



**Fixed Cup Type** 

(A) Equivalent working transmission torque capacity





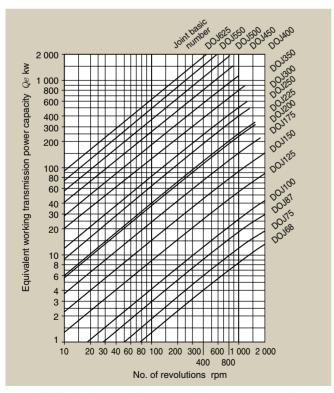
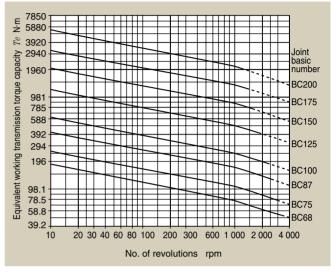
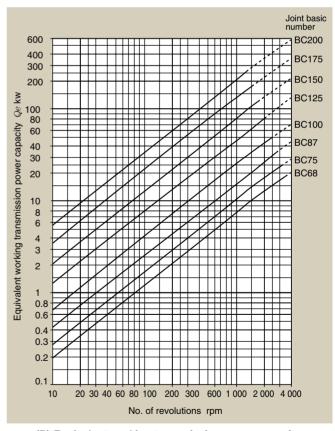
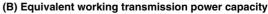


(B) Equivalent working transmission power capacity

Fig. 8-1 Equivalent working transmission torque and equivalent working transmission power capacity


#### **Sliding Type**




(A) Equivalent working transmission torque capacity




#### **Coupling Type**



(A) Equivalent working transmission torque capacity





(B) Equivalent working transmission power capacity

Remarks 1) The values of the equivalent working transmission torque and power in Fig.8 (A) and (B) are based on the life of 7,200 hours (three years, 25 working days per month).

2) When intending to use the CVJ within an envelope defined with a dotted line, contact NTN Engineering.

Fig. 8-2 Equivalent working transmission torque and equivalent working transmission power capacity

#### 2. Selection Based on Strength

- **2.1** Determine working peak torque *T* max {kgf·m}.
- **2.2** Check that the maximum dynamic allowable torque  $TD_1$  or  $TD_2$  (see **Table 2**) is greater than the working peak torque.

Table 2 Allowable maximum torque of CVJ

|             |                 | Dynamic allowable torque                                  |                                                                           |  |
|-------------|-----------------|-----------------------------------------------------------|---------------------------------------------------------------------------|--|
| Joint basic | Туре            | When torque fluctuates during revolution in one direction | When start / stop and forward / reverserevolution are repeated frequently |  |
|             |                 | <i>TD</i> ₁<br>kgf⋅m                                      | <i>TD</i> ₂<br>kgf⋅m                                                      |  |
| BC68        | Coupling Type   | 412 {42}                                                  | 275 {28}                                                                  |  |
| DOJ68       | Sliding Type    | +12 (+2)                                                  | 270 (20)                                                                  |  |
| BJ75        | Fixed Disc Type | _                                                         |                                                                           |  |
| 2010        | Fixed Cup Type  | - 588 {60}                                                | 392 {40}                                                                  |  |
| DOJ75       | Sliding Type    | _                                                         |                                                                           |  |
| BC75        | Coupling Type   |                                                           |                                                                           |  |
| DOJ87       | Sliding Type    | - 932 {95}                                                |                                                                           |  |
| BC87        | Coupling Type   |                                                           | 637 {65}                                                                  |  |
| BJ95        | Fixed Disc Type | - 1130 {115}                                              |                                                                           |  |
|             | Fixed Cup Type  |                                                           |                                                                           |  |
| BJ100       | Fixed Cup Type  | _                                                         |                                                                           |  |
| DOJ100      | Sliding Type    | 1420 {145}                                                | 883 {90}                                                                  |  |
| BC100       | Coupling Type   |                                                           |                                                                           |  |
| BJ125       | Fixed Disc Type | _                                                         |                                                                           |  |
| 20120       | Fixed Cup Type  | - 2750 {280}                                              | 1470 {150}                                                                |  |
| DOJ125      | Sliding Type    |                                                           | 1470 (150)                                                                |  |
| BC125       | Coupling Type   |                                                           |                                                                           |  |
| BJ150       | Fixed Disc Type | 4710 {480}                                                |                                                                           |  |
| D3130       | Fixed Cup Type  | 4710 (400)                                                | 2890 {295}                                                                |  |
| DOJ150      | Sliding Type    | 4810 {490}                                                | 2030 (233)                                                                |  |
| BC150       | Coupling Type   | 4010 (400)                                                |                                                                           |  |
| BJ175       | Fixed Disc Type | 6720 {685}                                                |                                                                           |  |
| 50175       | Fixed Cup Type  | 0120 (000)                                                | 4020 {410}                                                                |  |
| DOJ175      | Sliding Type    | 7360 {750}                                                | 4020 [410]                                                                |  |
| BC175       | Coupling Type   | 1000 (100)                                                |                                                                           |  |
| BJ200       | Fixed Disc Type | 11200 {1140}                                              |                                                                           |  |
| D3200       | Fixed Cup Type  | 11200 (1140)                                              | 5880 {600}                                                                |  |
| DOJ200      | Sliding Type    | 11500 {1170}                                              | 5666 (666)                                                                |  |
| BC200       | Coupling Type   | 11300 {1170}                                              |                                                                           |  |
| BJ225       | Fixed Disc Type | 14700 {1500}                                              | 7550 {770}                                                                |  |
|             | Fixed Cup Type  | 14700 [1000]                                              | 1330 (110)                                                                |  |
| DOJ225      | Sliding Type    |                                                           | 7160 {730}                                                                |  |
| BJ250       | Fixed Disc Type | 20700 {2110}                                              | 10700 {1090}                                                              |  |
| DOJ250      | Sliding Type    | _                                                         | 11200 {1140}                                                              |  |
| BJ300       | Fixed Disc Type | 29100 {2970}                                              | 15800 {1610}                                                              |  |
| DOJ300      | _               |                                                           | 14500 {1480}                                                              |  |
| DOJ350      | _               |                                                           | 22900 {2340}                                                              |  |
| DOJ400      | _               |                                                           | 34100 {3480}                                                              |  |
| DOJ450      | Sliding Type    | _                                                         | 48500 {4950}                                                              |  |
| DOJ500      |                 |                                                           | 66800 {6810}                                                              |  |
| DOJ550      | _               |                                                           | 89100 {9090}                                                              |  |
| DOJ625      |                 |                                                           | 116000 {11800}                                                            |  |

#### 3. Selection Based on Number of Revolutions

1. Considering durability of the boots, check that the RPM in **Fig. 9** is within the joint angle limitation.

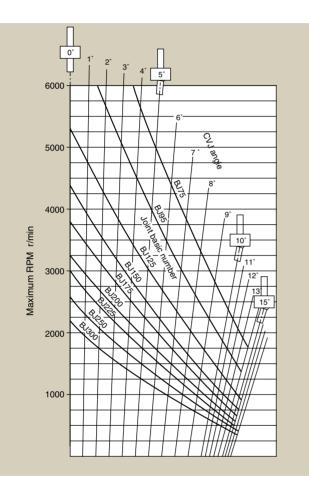



Fig. 9 CVJ angle versus allowable RPM

- 2. Depending on the shaft length, the working RPM of a joint will be limited. Check the allowable RPM of the intended shaft against the data in **Fig. 10**.
- 3. For the allowable RPM of the intended shaft in low speed and high speed applications, refer to **Fig. 11**.

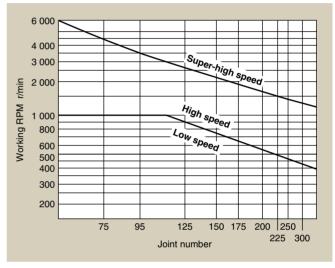



Fig. 11 Joint number versus RPM

NOTE: When selecting an optimal constant velocity joint, the location of operation and operating conditions must be considered in addition to the above-mentioned selection criteria. Contact NTN Engineering. Select a joint that satisfies all of criteria **1 through 3** above.

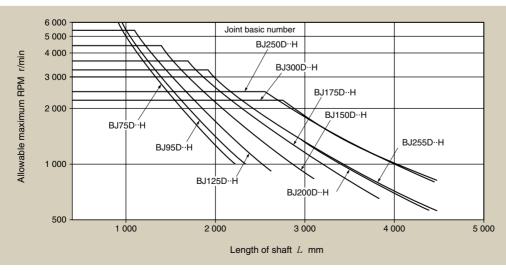



Fig. 10 Allowable RPM of shaft

**Fixed Disc Type** 

### **Fixed Cup Type**

- 1. When considering the durability of the boots, check that the RPM in **Fig. 12** is within the joint angle limitation.
- Depending on the shaft length, the working number of revolutions of joint will be limited. Check the allowable RPM of the intended shaft against the data in Fig. 13.

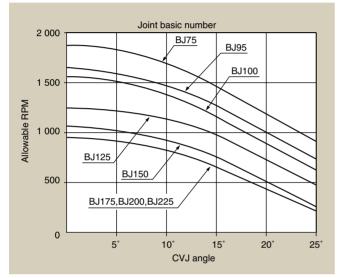



Fig. 12 Joint angle versus allowable RPM

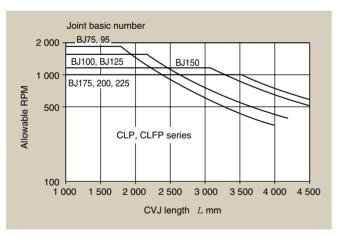



Fig.13 Allowance RPM of shaft

3. For the allowable RPM for the CLT and CLFT series, refer to the allowable RPM data in **Fig. 14**.

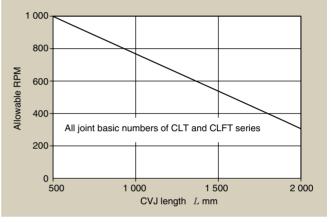



Fig. 14 Allowable RPM of shaft

NOTE: When selecting an optimal constant velocity joint, the location of operation and operating conditions must be considered in addition to the above-mentioned selection criteria. Contact NTN Engineering.

### **Coupling Type Joint**

1. When considering boot durability of the boots, check that the RPM is within the joint angle limitation in **Table 3**.

| Table 3 Allowable RPM of CVJ rpm |              |           |               |  |
|----------------------------------|--------------|-----------|---------------|--|
|                                  |              | Series    |               |  |
| Joint basic<br>number            | P201<br>P601 | PB<br>PFB | PB…H<br>PFB…H |  |
| BC 68                            | 3 000        | 1 500     | 3 000         |  |
| BC 75                            | 2 500        | 1 500     | 2 500         |  |
| BC 87                            | 2 000        | 1 500     | 2 000         |  |
| BC 100                           | 1 800        | 1 000     | 1 800         |  |
| BC 125                           | 1 500        | 1 000     | 1 500         |  |
| BC 150                           | 1 200        | 700       | 1 200         |  |
| BC 175                           | 1 000        | 700       | 1 000         |  |
| BC 200                           | 1 000        | 700       | 1 000         |  |

2. With the long shaft series joints, depending on the shaft length, the working RPM of joint will be limited. Check the allowable RPM of the intended shaft against the data in **Fig. 15**.

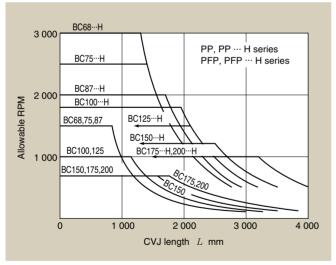



Fig. 15 Allowable RPM of CVJ

#### 4. Large Size Series DOJ225-DOJ625

# Correlation between CVJ angle and allowable expansion

When an angle occurs on a CVJ, the balls will move and the allowable expansion will decrease. The value of 2a in **Fig. 16** is the total expansion decrease of a pair of joints. To determine the expansion for intended application, subtract 2a (see **Fig. 16**) from the allowable expansion at 0°

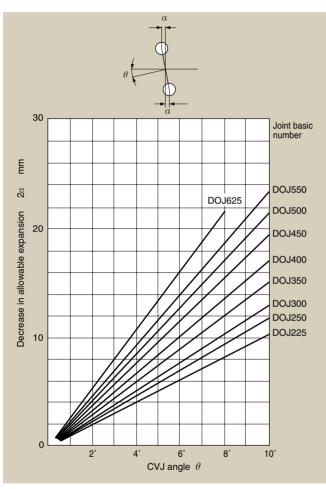



Fig. 16 Allowable expansion

Remarks: The correlation between the center-to-center distance of CVJ and allowable offset is given in **Fig. 17**, and that between the center-to-center distance of CVJ and allowable angle is illustrated in **Fig. 18**.

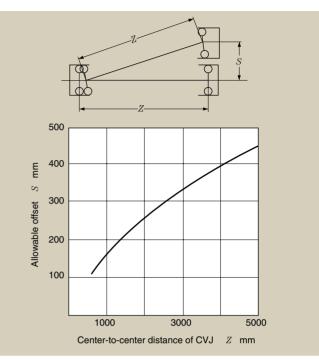



Fig. 17 Allowable offset

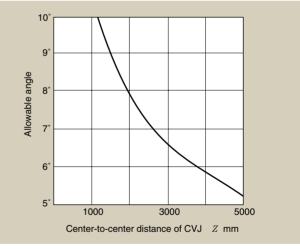



Fig. 18 Allowable angle

#### 5. Examples for Selecting a Constant Velocity Joint (Fixed Disc Type)

#### Example 1

Select the CVJ for a steel plate feeding pinch rollers that are used under the following conditions.

Motor output: 37 kw/1,750 RPM Reduction ratio: 1/3 Normal operating output is 60% motor output. The peak torque when a steel plate is pinched should be taken at 150% motor output. Roller speed: 585 r/min CVJ angle during machine operation is fixed at 5°. This machine runs continuously 20 hours a day.

#### Selection

These operating conditions correspond with the load model (2) in **Fig. 1** in page 12.

Peak torque

 $T \max = \frac{974 \times 37}{585} \times 1.5$ 

where: 974 is conversion from KW to kgf m

= 92.4kgf•m

Working torque  $Ta = \frac{974 \times 37}{585} \times 0.6$ 

= 37kgf•m

| From Table 1 in page 12 | K <sub>1</sub> = 1    |
|-------------------------|-----------------------|
| From Fig. 2 in page 13  | K <sub>2</sub> = 1.35 |
| From Fig. 3 in page 13  | $K_2 = 0.90$          |

Equivalent working torque

$$Te = \frac{K_1 \times K_2}{K_3} \cdot Ta = \frac{1 \times 1.35}{0.90} \times 37$$
$$= 55.5 \text{ kgf} \cdot \text{m}$$

From the equivalent working torque graphs in **Fig. 8** in page 14, the joint basic number of the CVJ that satisfies 544 N•m relative to 585 RPM is **BJ125** (equivalent working torque 598 N•m). The dynamic allowable torque of this joint when torque fluctuates during revolution in one direction is 280 kgf•m, which satisfies the peak torque 92.4 kgf•m calculated above. Therefore, the CVJ **BJ125** is suited for the operating conditions above.

#### Example 2

Select the CVJ for driving a hydraulic pump under the following conditions.

| Rated torque of drive shaft: | 5kgf∙m            |
|------------------------------|-------------------|
| Speed:                       | 1,800 RPM         |
| Joint angle:                 | 4°                |
| This pump runs continuous    | y 24 hours a day. |

#### Selection

In this application, the torque remains constant. Therefore, the rated torque only should be considered.

Operating time factor  $K_2 = 1.44$ Operating angle factor  $K_3 = 0.92$ 

Equivalent working torque 
$$Te = \frac{K_2}{K_3} \cdot Ta = \frac{1.44}{0.92} \times 5$$

= 7.8kgf•m

In equivalent working transmission torque graph in **Fig. 8**, the CVJ basic number that satisfies 7.8 kgf·m against 1,800 RPM is **BJ75** (equivalent working torque 9.6 kgf·m against 1,800 RPM).

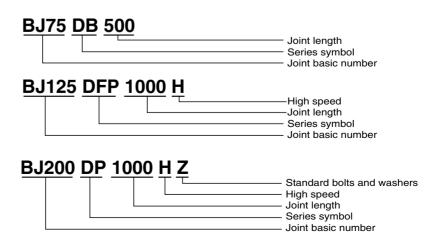


# **Fixed Disc Type**

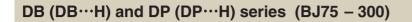
# Varieties of Fixed Disc Type Joints

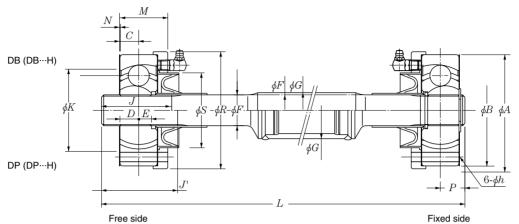
| Ту                  | /pe                                                                    | Series symbol                                     | Structural drawing                   | Remarks                                                                                                                                                                                                                                       | Page of dimensions table |
|---------------------|------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Shaft assemblies    | No semi-<br>finished flange                                            | DB<br>DB··H<br>DP<br>DP··H                        | Solid shaft<br>Hollow shaft          | A product consisting of two CVJs<br>connected with a solid or hollow shaft.One<br>joint is used for the fixed side shaft, the<br>other for the free side shaft.<br>Expansion during operation is provided by<br>the splines on the free side. | P24, 25                  |
|                     | Complete with<br>semi-finished flange                                  | DFB<br>DFB··H<br>DFP<br>DFP··H                    |                                      | A product identical to DB or DP series<br>product except having semi-finished<br>flanges.                                                                                                                                                     | - P26, 27                |
|                     | Complete with<br>semi-finished hub                                     | DHB<br>DHB··H<br>DHP<br>DHP··H                    |                                      | A product identical to DB or DP series product except having semi-finished hubs.                                                                                                                                                              | - F20, 27                |
| Joint<br>assemblies | CVJ with<br>shaft head                                                 | DS<br>(for free side)<br>DK<br>(for fixed side)   |                                      | An assembly consisting of a joint, boot, and shaft head for welding a steel pipe.                                                                                                                                                             | P25                      |
| Accesories          | abu gray base     201<br>(for fixed side)       202<br>(for free side) |                                                   | Components for mounting the CVJ to a | P44, 45                                                                                                                                                                                                                                       |                          |
|                     | Semi-finished flange                                                   | 204<br>(for fixed side)<br>205<br>(for free side) |                                      | mating shaft.                                                                                                                                                                                                                                 | F 44, 43                 |
|                     | Boot                                                                   | _                                                 |                                      | Components for containing grease within the CVJ.                                                                                                                                                                                              | P46                      |
|                     | Hexagon headed bolt<br>Spring washer                                   | _                                                 |                                      | Components for fastening the CVJ to the mounting flanged hub.                                                                                                                                                                                 | P47                      |

#### **CVJ** number


Ex. 1 A CVJ with basic number BJ75; DB series, and L=500

#### Ex. 2


A CVJ with basic number BJ125; DFP series, high speed, and L=1,000


#### Ex. 3

A CVJ with basic number BJ200; DP series, high speed, and L=1,000; complete with hexagon headed bolts and spring washers



www.alacag.com.tr







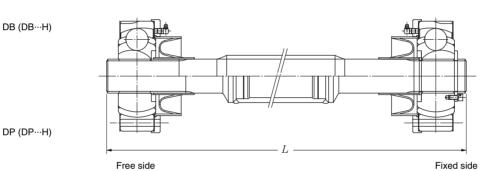



Fig. 2 BJ175 - 300

| Dimensional<br>data | C                                    | Outer rac  | ce   |       | Inner | race |          |    | Sh          | naft                          |             |    | Circum-<br>ference |          | Seal    |     | Joint ler                                 | ngth L           |
|---------------------|--------------------------------------|------------|------|-------|-------|------|----------|----|-------------|-------------------------------|-------------|----|--------------------|----------|---------|-----|-------------------------------------------|------------------|
| Joint<br>basic      | Outside dia.                         | Pitch dia. |      | Width | Wi    | I    | DB…H     | DB | DP,<br>DP…H | Spline effe<br>DB,<br>DB····H | DP,<br>DP…H | Р  | Total<br>width     |          | de dia. |     | DB DB···H<br>Upper line…Min. <sup>●</sup> | DP DP…H<br>Min.♥ |
| number \            | φA                                   | φB         | φh   | C     | D     | E    | $\phi F$ | ¢  | G           | J                             | J'          |    | N                  | $\phi R$ | φS      | N   | Lower line…Max.                           |                  |
| BJ75                | 80 0<br>-0.046                       | 66         | 8.5  | 12.2  | 11.0  | 7.9  | 22.33    | 25 | 48.6        | 50                            | 60          | 16 | 33.9               | 85       | 51      |     | 250- 150-<br>500                          | 510              |
| BJ95                | 95 0<br>-0.054                       | 80         | 0.5  | 15.9  | 14.0  | 10.6 | 26.36    | 30 | 40.0        | 60                            | 70          | 21 | 41.3               | 100      | 64      |     | 280- 190-<br>500                          | 510              |
| BJ125               | 125 0<br>0                           | 106        | 10.5 | 20.3  | 20.3  | 12.1 | 36.33    | 40 | 60.5        | 75                            | 80          | 29 | 50.1               | 130      | 82      | 0.5 | 320- 250-<br>600                          | 610              |
| BJ150               | 146 0<br>-0.063                      | 124        | 12.5 | 24.1  | 21.5  | 17.0 | 45.6     | 50 | 76.3        | 90                            | 90          | 28 | 57.7               | 151      | 102     |     | 340- 250-<br>700                          | 710              |
| BJ175               | 165.1 0<br>0100                      | 139.7      | 15   | 25.4  | 28.5  | 18.5 | 51.6     | 55 | 89.1        | 100                           | 120         | 38 | 62.4               | 170      | 112     |     | 380- 300-<br>800                          | 810              |
| BJ200               | 190 0<br>115                         | 159        | 13.5 | 30.0  | 22.5  | 31.5 | 59.5     | 65 | 101.6       | 120                           | 130         | 40 | 72.6               | 196      | 130     |     | 400- 340-<br>800                          | 810              |
| BJ225               | 212 0<br>115                         | 180        | 13.5 | 32.5  | 27.6  | 36.0 | 65.4     | 70 | 101.0       | 130                           | 130         | 48 | 77.6               | 218      | 152     | 0.8 | 440- 380-<br>800                          | 810              |
| BJ250               | 230 0<br>115                         | 197        | 17 5 | 37.5  | 37.5  | 26.5 | 74.25    | 80 | 100.0       | 130                           | 145         | 53 | 87.6               | 238      | 162     |     | 460- 400-<br>800                          | 810              |
| BJ300               | 266.7 <sup>0</sup> <sub>-0.130</sub> | 225.4      | 17.5 | 42.0  | 43.0  | 30.0 | 83.4     | 90 | 139.8       | 150                           | 165         | 65 | 97.6               | 273      | 186     |     | 500- 450-<br>800                          | 810              |

• Various joint lengths are available in increments of 5 mm within a range from a minimum to a maximum in the table.

**2** A joint length smaller than the minimum value is available. Contact NTN Engineering.

The maximum joint length is limited by the operating conditions, manufacturing and shipping. If a particularly long joint length is needed, contact NTN Engineering. Remarks: The orientation of the inside construction of joint BJ200 and BJ225 differs from that in the illustrations.

### Joint Assemblies with Shaft Head DS and DK Series

Fastening method: Tap bolt system DS…Free side DK…Fixed side

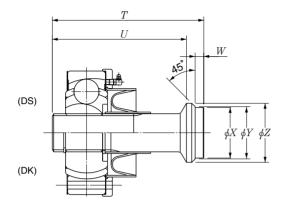
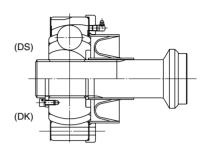
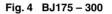





Fig. 3 BJ75 – 150

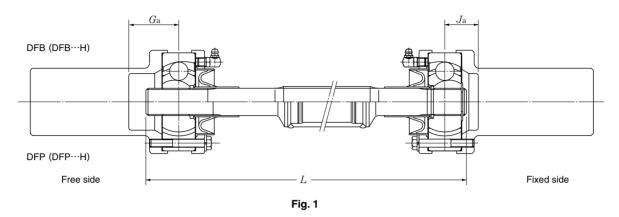
The **DS** and **DK** joint assemblies are components of **DP series**. Usually, one **DS** joint assembly and one **DK** joint assembly are welded to a segment of steel pipe before operation of the unit.The CVJ proper, shaft, boot and accessories are delivered unassembled.



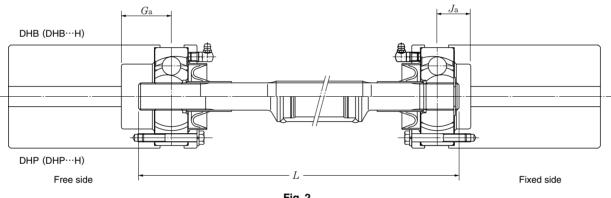


Assembly sequence

- 1. Weld the steel pipe to the shaft heads. (See page 51.)
- 2. Lubricate the joint assemblies with the authorized **NTN** constant velocity joint grease provided.
- 3. Install the accessories using special tools. (See pages 59 and 60.)


#### Material of shaft head: SCM440 Recommended steel pipe material: STKM13 or STPG 370 or equivalent

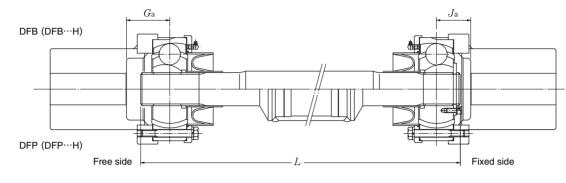
Dimensional unit mm


|                                     |                  |          | Shaft | head |             |         |     | Reference dimension            | Allov<br>operatir | vable<br>ng angle |                    | (                | $GD^2 \times 10^{10}$ | 10 <sup>-3</sup> kg | • m² (le           | eft colu         | mn), N | lass kg        | ı (right o | column                                                                                                                                                       | )      |      |
|-------------------------------------|------------------|----------|-------|------|-------------|---------|-----|--------------------------------|-------------------|-------------------|--------------------|------------------|-----------------------|---------------------|--------------------|------------------|--------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| Outsic<br>¢X                        | de dia. $\phi Y$ | $\phi Z$ | DS    | DK   | Length<br>W | DS<br>U | DK  | Under-<br>cut dia.<br>$\phi K$ | Dynamic           | Static            | Wł<br><i>L</i> =50 | D<br>nen<br>10mm |                       | ditional            | Wł<br><i>L</i> =50 | DB<br>nen<br>0mm | Per ad | ditional<br>mm |            | nen                                                                                                                                                          | Per ad |      |
| 41.6 +0.062<br>0                    | 42.6             | 48.6     | 135   | 102  | 8           | 119     | 86  | 50                             | 14°               | 16°               | 8.67               | 3.77             | 0.12                  | 0.39                | 8.55               | 3.54             | 0.08   | 0.31           | 15.8       | 6.87                                                                                                                                                         | 0.00   | 0.40 |
| 41.0 0                              | 42.0             | 40.0     | 145   | 108  | 0           | 131     | 94  | 63                             | 14                | 10                | 21.0               | 5.85             | 0.25                  | 0.56                | 20.7               | 5.48             | 0.15   | 0.43           | 27.6       | 0.96           8.39           15.6         2.1           23.3         5.2           32.3         8.5           48.4         17.8           59.6         17.8 | 0.49   |      |
| 51.7 <sup>+0.074</sup> <sub>0</sub> | 53               | 60.5     | 100   | 140  | 10          | 170     | 120 | 80                             |                   |                   | 76.3               | 11.7             | 0.79                  | 0.99                | 75.7               | 11.3             | 0.54   | 0.81           | 91.0       | 15.6                                                                                                                                                         | 2.1    | 0.75 |
| 66 <sup>+0.074</sup> <sub>0</sub>   | 67               | 76.3     | 190   | 150  |             | 163     | 123 | 96                             |                   |                   | 160                | 17.5             | 1.93                  | 1.54                | 159                | 16.9             | 1.33   | 1.28           | 197        | 23.3                                                                                                                                                         | 5.2    | 1.04 |
| 79.5 +0.074<br>0                    | 81.5             | 89.1     | 235   | 175  | 15          | 205     | 145 | 110                            | 16°               | 18°               | 273                | 24.2             | 2.80                  | 1.86                | 271                | 23.8             | 2.18   | 1.64           | 330        | 32.3                                                                                                                                                         | 8.5    | 1.34 |
| 87 +0.087                           | 90               | 101.6    | 250   | 190  | 15          | 222     | 162 | 130                            |                   |                   | 551                | 35.2             | 5.50                  | 2.60                | 548                | 34.6             | 3.87   | 2.18           | 660        | 48.4                                                                                                                                                         | 17.0   |      |
| 87 0                                | 90               | 101.6    | 260   | 202  |             | 230     | 172 | 150                            |                   |                   | 904                | 45.9             | 7.40                  | 3.02                | 900                | 45.4             | 5.63   | 2.64           | 1010       | 59.6                                                                                                                                                         | 17.8   | 2.26 |
| 123 +0.100                          | 105              | 100.0    | 320   | 230  | 00          | 284     | 194 | 160                            | 10°               | 00°               | 1400               | 59.4             | 12.6                  | 3.94                | 1390               | 58.8             | 9.37   | 3.40           | 1700       | 82.5                                                                                                                                                         | 54     |      |
| 123 0                               | 125              | 139.8    | 370   | 260  | 20          | 332     | 222 | 180                            | 18°               | 20°               | 2860               | 87.3             | 20.2                  | 4.99                | 2850               | 86.9             | 14.9   | 4.29           | 3200       | 111                                                                                                                                                          | 54     | 3.20 |

#### www.alacam.com.tr

### DFB (DFB···H) and DFP (DFP···H) series (BJ75 – 150)




```
DHB (DHB····H) and DHP (DHP····H) series (BJ75 – 150)
```



| Fig. | 2 |
|------|---|
|------|---|

|                        |        |                  |        |        |                          |             |                   |                         |               |                                |              |         |        | Dimension            | ai unit mm |
|------------------------|--------|------------------|--------|--------|--------------------------|-------------|-------------------|-------------------------|---------------|--------------------------------|--------------|---------|--------|----------------------|------------|
| Dimensional            |        | CVJ              | center |        |                          |             | GD <sup>2</sup> > | ×10 <sup>-3</sup> kg ∙r | m² (left colu | mn), Mass                      | kg (right co | lumn)   |        |                      |            |
| data<br>Joint<br>basic | Figure | $G_{\mathrm{a}}$ | Ja     |        | Jpper line<br>_ower line |             |                   |                         |               | e···· DFB····I<br>e··· DHB···I |              |         |        | DFP, DFP<br>DHP, DHP |            |
| number                 |        |                  |        | When L | =500mm                   | Per additio | nal 100mm         | When L                  | =500mm        | Per additio                    | nal 100mm    | When L= | 1000mm | Per additio          | nal 100mm  |
| BJ75                   | 1      | 36.7             | 24.7   | 16.4   | 7.15                     | 0.12        | 0.39              | 16.3                    | 6.92          | 0.08                           | 0.31         | 23.6    | 10.3   |                      |            |
| BJ75                   | 2      | 30.7             | 24.7   | 45.3   | 13.6                     | 0.12        | 0.39              | 45.2                    | 13.3          | 0.00                           | 0.31         | 52.4    | 16.7   | 0.96                 | 0.40       |
| BJ95                   | 1      | 40.4             | 32.4   | 40     | 12.5                     | 0.05        | 0.50              | 39.8                    | 12.1          | 0.15                           | 0.42         | 46.6    | 15.0   | 0.96                 | 0.49       |
| D192                   | 2      | 48.4             | 32.4   | 106    | 22.2                     | 0.25        | 0.56              | 106                     | 21.8          | 0.15                           | 0.43         | 113     | 24.7   |                      |            |
| BJ125                  | 1      | 60.8             | 40.8   | 152    | 26.1                     | 0.79        | 0.99              | 151                     | 25.7          | 0.54                           | 0.81         | 166     | 30.0   | 2.1                  | 0.75       |
| BJ125                  | 2      | 00.0             | 40.0   | 362    | 40.7                     | 0.79        | 0.99              | 362                     | 40.3          | 0.54                           | 0.01         | 375     | 44.6   | 2.1                  | 0.75       |
| B 1150                 | 1      | 70.6             | 48.6   | 323    | 40.2                     | 1.00        | 1 5 4             | 322                     | 39.6          | 1.00                           | 1.28         | 360     | 46.0   | 5.0                  | 1.04       |
| BJ150                  | 2      | 72.6             | 40.0   | 749    | 60.7                     | 1.93        | 1.54              | 748                     | 60.1          | 1.33                           | 1.28         | 782     | 66.5   | 5.2                  | 1.04       |

Dimensional unit mm

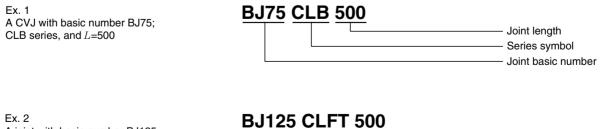


# DFB (DFB····H) and DFP (DFP····H) series (BJ175 – 300)

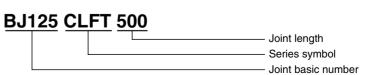


Dimensional unit mm

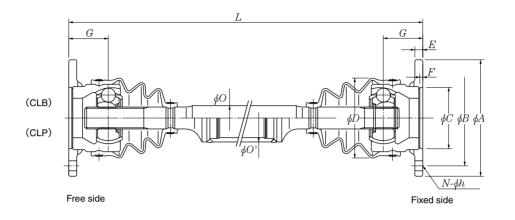
| Dimensional           | CVJ o            | center |            |             |      | $GD^2 \times 10$ | <sup>-3</sup> kg ∙ m² ( | (left colum | n), Mass I | kg (right co    | lumn) |             |       |                 |
|-----------------------|------------------|--------|------------|-------------|------|------------------|-------------------------|-------------|------------|-----------------|-------|-------------|-------|-----------------|
| data                  | $G_{\mathrm{a}}$ | Ja     |            | DF          | −В   |                  |                         | DFB         | юн         |                 |       | DFP, [      | DFP…H |                 |
| Joint basic<br>number | 0 a              | 0 a    | Wh<br>L=50 | nen<br>I0mm |      | ditional<br>mm   |                         | nen<br>10mm |            | ditional<br>)mm |       | nen<br>00mm |       | ditional<br>)mm |
| BJ175                 | 80.2             | 60.2   | 596        | 53.9        | 2.80 | 1.86             | 594                     | 53.5        | 2.18       | 1.64            | 653   | 62.0        | 8.5   | 1.34            |
| BJ200                 | 85.8             | 65.8   | 1180       | 77.1        | 5.50 | 2.60             | 1180                    | 76.5        | 3.87       | 2.18            | 1290  | 90.3        | 17.0  | 0.00            |
| BJ225                 | 88.3             | 68.3   | 1960       | 105         | 7.40 | 3.02             | 1960                    | 104         | 5.63       | 2.64            | 2070  | 118         | 17.8  | 2.26            |
| BJ250                 | 96.3             | 76.3   | 3250       | 140         | 12.6 | 3.94             | 3240                    | 139         | 9.37       | 3.40            | 3550  | 163         | 54.0  | 2.00            |
| BJ300                 | 112.8            | 87.8   | 6200       | 200         | 20.2 | 4.99             | 6190                    | 199         | 14.9       | 4.29            | 6540  | 223         | 54.0  | 3.20            |



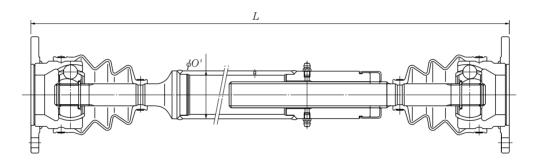

# **Fixed Cup Type**


# Varieties of Fixed Disc Type Joints

| Т                   | уре                                                 | Series symbol          | Structural drawing | Remarks                                                                                                                                                                                                            | Page of dimensions table |
|---------------------|-----------------------------------------------------|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                     | p                                                   | CLB                    | Solid shaft        | A product consisting of two CVJs connected<br>with a solid or hollow shaft.<br>One joint is used for the fixed side shaft, the                                                                                     |                          |
|                     | emi-finishe<br>flange                               | CLP                    | Hollow shaft       | other for the free side shaft.<br>Expansion during operation is provided by the<br>splines on the free side.                                                                                                       | – P30, 31                |
| Shaft assemblies    | No semi-finished<br>flange                          | CLT                    |                    | A product consisting of two CVJs proper<br>connected with an intermediate slide splined<br>shaft. Both CVJs proper are fixed.<br>Expansion during operation is provided by the<br>intermediate slide spline shaft. |                          |
| Shaft as            | nge                                                 | CLFB                   |                    | A product identical to CLB or CLP series                                                                                                                                                                           |                          |
|                     | Complete with<br>mi-finished flar                   | CLFP                   |                    | product except having semi-finished flanges.                                                                                                                                                                       | - P32                    |
|                     | Complete with<br>semi-finished flange               | CLFT                   |                    | A product identical to CLP series product except having semi-finished flanges.                                                                                                                                     |                          |
| Joint<br>assemblies | CVJ with<br>shaft head                              | CLS<br>(for free side) |                    | An assembly consisting of a CVJ, boot, and                                                                                                                                                                         | DO1                      |
| Jc<br>asser         | CVJ with<br>shaft hea                               | CLK<br>(for fixed)     |                    | shaft head for welding a steel pipe.                                                                                                                                                                               | P31                      |
|                     | Semi-finished<br>flange                             | 400                    |                    | A component for mounting the CVJ to a                                                                                                                                                                              | D44_45                   |
|                     | Semi-fi<br>flar                                     | 800                    |                    | mating shaft.                                                                                                                                                                                                      | P44, 45                  |
| Accesories          | Boot<br>Boot band                                   |                        |                    | Components for containing grease within the CVJ.                                                                                                                                                                   | P46                      |
|                     | Hexagon headed bolt<br>Spring washer<br>Hexagon nut |                        |                    | Components for fastening the CVJ to the mounting flanged hub.                                                                                                                                                      | P47                      |


#### **CVJ** number



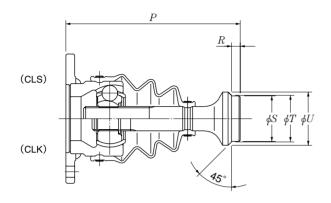

A joint with basic number BJ125; CLFT series, and L=1,000



### CLB and CLP series (BJ75 - 225)



# CLT series (BJ75 - 225)




| Dimensional    |                 |          | Ou                | ter race                                                                           | )           |    |     | Boot                        | Sh        | aft         | CVJ center |         | Joint length $L^{ullet}$ |           |
|----------------|-----------------|----------|-------------------|------------------------------------------------------------------------------------|-------------|----|-----|-----------------------------|-----------|-------------|------------|---------|--------------------------|-----------|
| Joint<br>basic | Outside<br>dia. |          | hole<br>Hole dia. | Sock                                                                               | et dia.     | Wi | dth | Outside<br>dia.<br>$\phi D$ | CLB<br>60 | CLP,<br>CLT |            | CLB     | CLP                      | CLT       |
| number         | φA              | $\phi B$ | N-øh              | 9                                                                                  | BC          | E  | F   | (approx.)                   | (Max.)    | $\phi O'$   | G          |         | Min. – Max.              |           |
| BJ75           | 118             | 97       | 3-10.2            | $\begin{array}{c} 62 & {}^{+0.074}_{0} \\ \hline 70 & {}^{+0.074}_{0} \end{array}$ |             | 8  |     | 81                          | 25        | 48.6        | 40         | 240–540 | 550-4000                 | 460–2000  |
| BJ95           | 136             | 110      | 3-12.2            |                                                                                    |             |    | 3   | 108                         | 30        | 40.0        | 46         | 290–540 | 550-4000                 | 520–2000  |
| BJ100          | 154             | 125      | 3-14.3            | 80                                                                                 | +0.074<br>0 | 10 |     | 112                         | 32        | 60.5        | 47         | 305–540 | 550-4200                 | 580–2000  |
| BJ125          | 179             | 150      | 3-14.3            | 102                                                                                | +0.087<br>0 |    | 3.5 | 148                         | 40        | 60.5        | 55         | 380–650 | 660–4200                 | 610–2000  |
| BJ150          | 192             | 165      | 6-14.3            | 110                                                                                | +0.087<br>0 | 12 | 0.0 | 165                         | 50        | 89.1        | 76         | 480–780 | 790–4500                 | 830–2000  |
| BJ175          | 215             | 185      | 6-17              | 125                                                                                | +0.100<br>0 | 15 |     | 172                         | 55        | 101.6       | 83         | 470–880 | 890–4500                 | 910–2000  |
| BJ200          | 250             | 215      | 6-19              | 140                                                                                | +0.100<br>0 | 16 | 5   | 5 199 65                    |           | 101.0       | 95         | 540–900 | 910–4500                 | 950–2000  |
| BJ225          | 265             | 228      | 6-21              | 155                                                                                | +0.100<br>0 | 18 |     | 222                         | 70        | 139.8       | 105        | 580–900 | 910-4500                 | 1050–2000 |

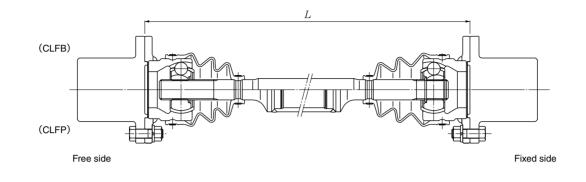
Various joint lengths *L* are available in increments of 5 mm within a range from a minimum to a maximum.
 The allowable expansion data is based on the center-to-center distance *d* relative to the operating angle indicated. Remarks:The form of boot can differ from that in the illustration depending on the joint basic number.

### Joint with Shaft Head CLS and CLK Series (BJ75 - 225)

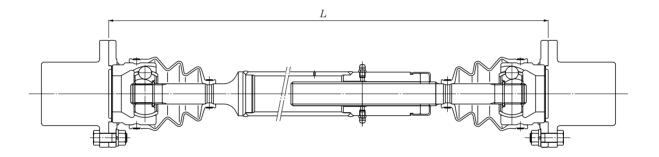
Fastening method: Through bolt system CLS…Free side CLK…Fixed side



The  $\ensuremath{\text{CLS}}$  and  $\ensuremath{\text{CLK}}$  joint assemblies are components of the CLP series. Usually one CLS and one CLK joint assembly is welded to a segment of steel pipe before operation of the shaft assembly. The CVJ assemblies, shaft heads, grease and boots are delivered unassembled.


Assembly sequence

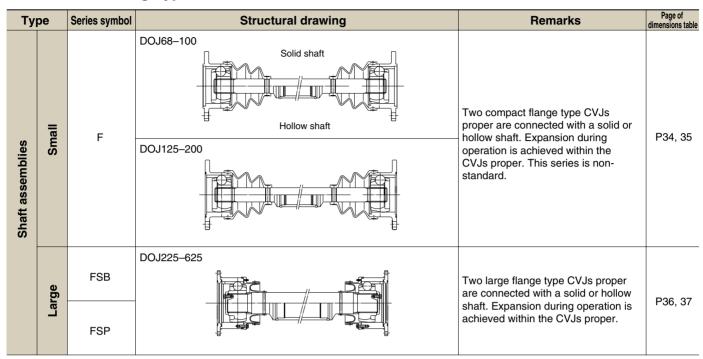
- 1. Weld the steel pipe to the shaft heads. (See page 51.)
- 2. Lubricate the joints with the provided grease for NTN constant velocity joints.
- 3. Install the accessories. (See pages 59 and 60.)


Material of shaft head: SCM440 Recommended steel pipe material: STKM13 or STPG 370 or equivalent

|                                    |                   |          |          |               |    |      |                                             |             |                   |                   |      |      |                   |                      |                    |          |        |          | Di       | mensio | onal un                                                | it mm    |
|------------------------------------|-------------------|----------|----------|---------------|----|------|---------------------------------------------|-------------|-------------------|-------------------|------|------|-------------------|----------------------|--------------------|----------|--------|----------|----------|--------|--------------------------------------------------------|----------|
|                                    | S                 | haft he  | ad       |               |    | Allo | wable expans                                | sion∅       | Allov<br>operatir | vable<br>ng angle |      | G    | $D^2 \times 10^2$ | ) <sup>-3</sup> kg ∙ | m <sup>2</sup> (le | ft colun | nn), N | lass kg  | ı (right | columr | ו)                                                     |          |
| Outsic<br>(app                     | de dia.<br>prox.) |          | I<br>CLS | Length<br>CLK |    | C    | LB, CLP                                     | CLT         | Dynamic           | Static            | W    | Cl   | LB<br>I Per ad    | ditional             | Wł                 | Cl       |        | ditional | Wł       |        |                                                        | ditional |
| $\phi S$                           | $\phi T$          | $\phi U$ | I        | D C           | R  |      | 15° 15° or more,<br>or less and 25° or less |             |                   |                   |      | 0mm  |                   | mm                   | L=100              |          |        | mm       | L=100    |        |                                                        |          |
| 41.6 +0.062                        | 42.6              | 48.6     | 151      | 159           | 8  |      |                                             | +80         |                   |                   | 14.8 | 4.17 | 0.12              | 0.39                 | 21.9               | 7.52     | 0.96   | 0.49     | 22.3     | 8.35   | 0.96                                                   | 0.49     |
| 41.0 0                             | .2.0              |          | 165      | 170           |    | ±10  | +10<br>-5                                   | -6          | _                 |                   | 32.6 | 6.42 | 0.25              | 0.56                 | 39.4               | 9.44     | 0.00   | 01.10    | 40.5     | 0.96   |                                                        |          |
| 51.7 <sup>+0.074</sup>             | 53                | 60.5     | 210      | 215           | 10 |      | -5                                          | +90         |                   |                   | 51.5 | 8.12 | 0.32              | 0.63                 | 65.2               | 13.2     | 2.1    | 0.75     | 67.1     | 14.5   | 2.1                                                    | 0.75     |
| 0 0                                |                   |          | 214      | 216           |    |      | ±10                                         | -8          | 25°               | 38°               | 109  | 12.5 | 0.79              | 0.99                 | 122                | 17.2     |        | 0.70     | 124      | 18.6   | CLT<br>Per adc<br>1007<br>0.96<br>2.1<br>8.5<br>- 17.8 |          |
| 79.5 <sup>+0.074</sup><br>0        | 81.5              | 89.1     | 299      | 306           |    |      |                                             | +120<br>-15 | 20                | 50                | 263  | 21.3 | 1.93              | 1.54                 | 314                | 31.1     | 8.5    | 1.34     | 329      | 36.7   | 8.5                                                    | 1.34     |
| 87 +0.087                          | 90                | 101.6    | 305      | 315           | 25 |      | ±15                                         |             |                   |                   | 469  | 29.2 | 2.80              | 1.86                 | 567                | 44.1     | 17.8   | 2.26     | 590      | 52.8   | 178                                                    | 2.26     |
| 07 <sub>0</sub>                    |                   |          | 337      | 343           |    |      |                                             | +150<br>-15 |                   |                   | 964  | 45.4 | 5.50              | 2.60                 | 1053               | 60.1     | 0      | 2.20     | 1081     | 69.0   | 17.8                                                   | 0        |
| 123 <sup>+0.100</sup> <sub>0</sub> | 125               | 138.9    | 364      | 371           | 30 |      |                                             |             |                   |                   | 1450 | 58.3 | 7.40              | 3.02                 | 1678               | 82.8     | 54     | 3.20     | 1838     | 102    | 54                                                     | 3.20     |

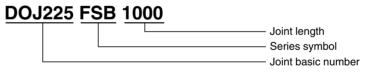
# CLFB and CLFPseries (BJ75 – 225)




# CLFTseries (BJ75 - 225)



| Dimensional         |         |        |             | GD <sup>2</sup> | $^{2}$ $	imes$ 10 <sup>-3</sup> kg $\cdot$ | m <sup>2</sup> (left colu | mn), Mass I | kg (right colu | mn)     |        |             |           |
|---------------------|---------|--------|-------------|-----------------|--------------------------------------------|---------------------------|-------------|----------------|---------|--------|-------------|-----------|
| data<br>Joint basic |         | CL     | .FB         |                 |                                            | CL                        | .FP         |                |         | CL     | .FP         |           |
| number              | When L= | =500mm | Per additio | nal 100mm       | When L=                                    | 1000mm                    | Per additio | nal 100mm      | When L= | 1000mm | Per additio | nal 100mm |
| BJ75                | 38.0    | 10.0   | 0.08        | 0.39            | 45.1                                       | 13.2                      | 0.96        | 0.49           | 45.5    | 14.2   | 0.96        | 0.49      |
| BJ95                | 79.0    | 14.9   | 0.15        | 0.56            | 85.8                                       | 17.6                      | 0.00        | 0.40           | 86.9    | 19.3   | 0.00        | 0.40      |
| BJ100               | 143     | 20.9   | 0.24        | 0.63            | 157                                        | 25.6                      | 2.1         | 0.75           | 159     | 27.1   | 2.1         | 0.75      |
| BJ125               | 303     | 33.5   | 0.54        | 0.99            | 316                                        | 37.8                      | 2.1         | 0.75           | 318     | 39.4   | 2.1         | 0.75      |
| BJ150               | 552     | 46.2   | 1.93        | 1.54            | 603                                        | 56.2                      | 8.5         | 1.34           | 618     | 61.2   | 8.5         | 1.34      |
| BJ175               | 1011    | 66.0   | 2.80        | 1.86            | 1110                                       | 80.0                      | 17.8        | 2.26           | 1133    | 88.9   | 17.8        | 2.26      |
| BJ200               | 2004    | 98.1   | 5.50        | 2.60            | 2093                                       | 112                       |             | 2.20           | 2121    | 121    | 17.0        | 2.20      |
| BJ225               | 3026    | 128    | 7.40        | 3.02            | 3254                                       | 151                       | 54.0        | 3.20           | 3414    | 171    | 54.0        | 3.20      |


# **Sliding Type**

### Varieties of Sliding Type Joint



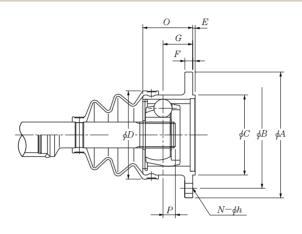
### **CVJ** number

Ex. 1 A CVJ with basic number DOJ225; FSB series, and *L*=1,000

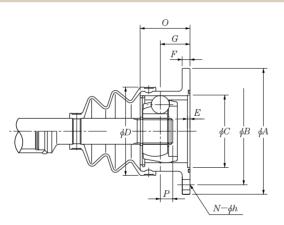


Ex. 2 A joint with basic number DOJ225; FSP series, and *L*=2,000

# DOJ225 FSP 2000


|  | L Joint length     |
|--|--------------------|
|  | Series symbol      |
|  | Joint basic number |

# **Sliding Type**


# **F** Series (reference)

The allowable operating range of a sliding type joint is governed by interrelation among the RPM, operating angle and expansion. When considering use of this type, contact NTN Engineering.

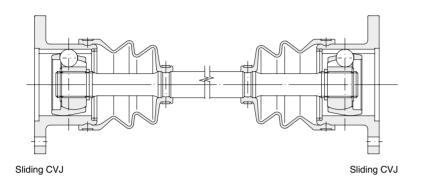
### DOJ68 - 100



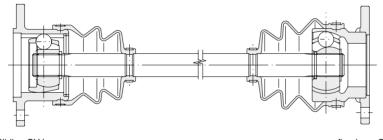
### DOJ125 - 200



|                     |                 |                  |                       |        |             |     |    |     |                              |        |                  | D         | imensiona              | l unit mm                       |
|---------------------|-----------------|------------------|-----------------------|--------|-------------|-----|----|-----|------------------------------|--------|------------------|-----------|------------------------|---------------------------------|
| Dimensional         |                 |                  | Oute                  | r race |             |     |    |     | Boot                         | Shaft  | Joint            | Allowable | expansion <sup>®</sup> |                                 |
| data<br>Joint basic | Outside<br>dia. | Bo<br>Pitch dia. | olt hole<br>Hole dia. |        | Socket      |     | Wi |     | Outside<br>dia.<br>(approx.) | Length | length           | At 0°     | At 20°                 | Allowable<br>operating<br>angle |
| number              | φΑ              | $\phi B$         | $N$ - $\phi h$        |        | $\phi C$    | Ε   | F  | 0 🔍 | φD                           | P      | $G^{\mathbf{Q}}$ |           |                        |                                 |
| DOJ68               | 95              | 76               | 3-10.5                | 60     | 0<br>-0.074 | 1.5 | 6  | 44  | 70                           | 9.5    | 19               | ±10       | ±6                     |                                 |
| DOJ75               | 106             | 87               | 3-10.2                | 70     | 0<br>-0.074 |     | 8  | 50  | 78                           | 11     | 28.5             | 10        |                        |                                 |
| DOJ87               | 125             | 105              | - 3-10.2 -            | 78     | 0<br>-0.074 | 3   |    | 60  | 89                           | 13     | 34               | ±13       | ±8                     |                                 |
| DOJ100              | 146             | 122              | 3-14.2                | 91     | 0<br>-0.087 |     | 11 | 65  | 100                          | 15     | 40               | 10        |                        | 20°                             |
| DOJ125              | 177             | 150              | 3-14.3                | 102    | +0.087<br>0 | 3.5 |    | 70  | 124                          | 17.5   | 42               | ±12       | ±5                     |                                 |
| DOJ150              | 215             | 185              | 3-16.4                | 124    | +0.100<br>0 | 4   | 13 | 85  | 154                          | 21     | 51               | ±15       | ±6                     |                                 |
| DOJ175              | 236             | 203              | 4-18.4                | 140    | +0.100<br>0 | 5   | 15 | 90  | 175                          | 25     | 60               | ±18       | ±7                     |                                 |
| DOJ200              | 270             | 233              | 4-20.4                | 165    | +0.100      | 6   |    | 100 | 200                          | 28     | 62               | ±16       | ±5                     |                                 |


1, 2 and 3 are reference values.

#### www.alacam.com.tr

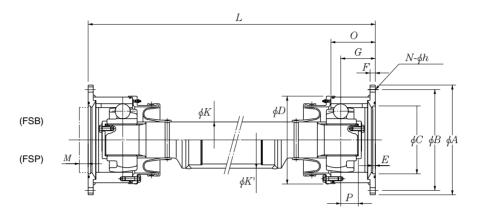

#### ım

The sliding CVJ can be used in two forms: a combination of two sliding CVJs connected with an intermediate shaft, and a configuration comprised of one sliding CVJ and a fixed CVJ to the other end.

[Ex. 1] Example combination of [sliding CVJ] + [sliding CVJ]



# [Ex. 2] The example shows a combination of [sliding CVJ] + [fixed cup CVJ]








# **Sliding Type**

# FSB and FSP series (DOJ225 - 625)



| Dimensional |        |        |            | Outer     | r race |             |    |    |     |          | Shaft     |        | Joint le    | ength |       |
|-------------|--------|--------|------------|-----------|--------|-------------|----|----|-----|----------|-----------|--------|-------------|-------|-------|
| data        | Outsic | le dia |            | Bolt hole |        | Socket      |    | Wi | dth | Outsid   | le dia.   | Length | FSB         | FSP   |       |
| Joint basic | Outsic |        | Pitch dia. | Hole dia. |        |             |    |    |     | FSB      | FSP       |        | L           | L     |       |
| number      | φA     | φD     | φB         | N-øh      | 9      | $\xi C$     | E  | F  | 0   | $\phi K$ | $\phi K'$ | P      | Min. – Max. | Min.  | G     |
| DOJ225      | 244    | 180    | 222        | 8-12.2    | 140    | +0.063<br>0 | 5  | 11 | 131 | 73       | 101.6     | 36     | 430–1200    | 550   | 106   |
| DOJ250      | 272    | 205    | 248        | 8-14.2    | 160    | +0.063<br>0 | 6  | 13 | 133 | 82       | 139.8     | 41     | 450-1200    | 590   | 108.5 |
| DOJ300      | 292    | 226    | 268        | 0 1 1.2   | 180    | +0.063<br>0 | Ũ  | 10 | 143 | 98       | 100.0     | 45     | 470–1200    | 680   | 115   |
| DOJ350      | 336    | 260    | 308        | 8-16.2    | 210    | +0.072<br>0 | 8  | 15 | 150 | 108      | 165.2     | 54.5   | 540-1200    | 740   | 119.5 |
| DOJ400      | 376    | 296    | 344        | 8-18.2    | 240    | +0.072<br>0 | 0  | 18 | 163 | 126      | 190.7     | 57.5   | 570–1200    | 810   | 127.5 |
| DOJ450      | 420    | 335    | 386        | 8-20.2    | 260    | +0.081<br>0 | 10 | 20 | 170 | 138      | 216.3     | 67.5   | 650–1200    | 900   | 132.5 |
| DOJ500      | 462    | 370    | 424        | 8-22.5    | 290    | +0.081<br>0 | 10 | 22 | 177 | 155      | 267.4     | 76     | 720–1200    | 1000  | 133.5 |
| DOJ550      | 504    | 407    | 464        | 8-24.5    | 320    | +0.089<br>0 | 12 | 25 | 185 | 170      | 207.4     | 81     | 770–1200    | 1070  | 139.5 |
| DOJ625      | 580    | 445    | 520        | 8-30.5    | 360    | +0.089<br>0 | 12 | 34 | 229 | 200      | 280       | 95     | 840–1200    | 1170  | 185   |

Various joint lengths *L* are available in increments of 5 mm within a range from a minimum to a maximum in the table.
 Upon request from the user, the bolt holes may be finished with a reamer. Contact NTN Engineering.

Dimensional unit mm

|              |           |                       |           |            |       |                                                  |            |                     |          | Dimensional      |      |
|--------------|-----------|-----------------------|-----------|------------|-------|--------------------------------------------------|------------|---------------------|----------|------------------|------|
| Under-cut    | Allowable | Allowable             |           |            | GI    | $D^2 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ | (left colu | mn), Mass kg (rig   | ht colum | n)               |      |
| on<br>flange | expansion | number of revolutions | operating |            | FSB s | series                                           |            |                     | FSP s    | series           |      |
| М            | At 0°     | rpm                   | angle     | When L=100 | 0mm   | Per additional 1                                 | 00mm       | When <i>L</i> =2000 | Omm      | Per additional 1 | 00mm |
| 22           | ±35       | 2200                  |           | 0.907      | 62.4  | 0.0087                                           | 3.28       | 1.11                | 83.7     | 0.0163           | 2.26 |
| 28           | ±00       | 2000                  |           | 1.58       | 83.2  | 0.0139                                           | 4.14       | 1.99                | 123      | 0.0275           | 3.20 |
| 20           | ±38       | 1800                  |           | 2.43       | 110   | 0.0284                                           | 5.92       | 3.07                | 148      | 0.0499           | 0.20 |
| 34           | ±40       | 1600                  | 10°       | 4.58       | 147   | 0.0419                                           | 7.19       | 5.67                | 199      | 0.0848           | 3.83 |
| 04           | ±+0       | 1300                  |           | 8.41       | 205   | 0.0776                                           | 9.78       | 10.6                | 273      | 0.169            | 5.29 |
| 36           | ±44       | 1200                  |           | 14.6       | 272   | 0.112                                            | 11.7       | 18.4                | 385      | 0.287            | 7.45 |
| 46           | ±46       | 1100                  |           | 23.6       | 350   | 0.178                                            | 14.8       | 30.8                | 543      | 0.494            | 11.1 |
| 48           | ±50       | 1000                  |           | 36.3       | 450   | 0.257                                            | 17.8       | 44.3                | 645      | 0.629            |      |
| 52           | _30       | 800                   | 8°        | 63.9       | 606   | 0.493                                            | 24.66      | 75.4                | 869      | 0.872            | 11.7 |



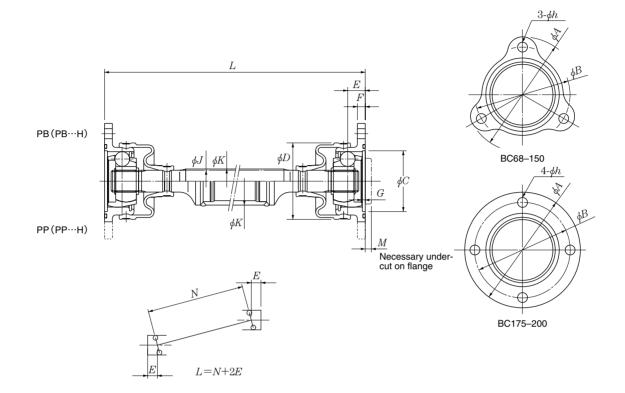
# **Coupling Type**

# Varieties of Coupling Type Joint

| •                   | Туре                                                               | Ser         | ies symbol                       | Structural drawing | Remarks                                                                                                                                                                                          | Page of<br>dimensions table |
|---------------------|--------------------------------------------------------------------|-------------|----------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                     |                                                                    | Short shaft | P201                             | BC175-200          | A compact CVJ assembly consisting of<br>two sliding flanged type CVJs connected<br>with asolid shaft.<br>Expansion during operation occurs within<br>the joints.                                 | - P40, 41                   |
| Shaft assemblies    | No semi-finished<br>flange                                         | Long shaft  | PB<br>PB··H<br>PP<br>PP··H       |                    | Two sliding flange type CVJs proper are<br>connected with a solid shaft or hollow<br>shaft to constitute a compact product.<br>Expansion during operation is achieved<br>within the CVJs proper. | - F40, 41                   |
| Shaft a             | Complete with semi-finished flange                                 | Short shaft | P601                             |                    | A product identical to P201 series product except having semi-finished hubs.                                                                                                                     | D40_40                      |
|                     | Comple<br>semi-finis                                               | Long shaft  | PFB<br>PFB···H<br>PFP<br>PFP···H |                    | A product identical to PB or PP series product except having semi-finished flanges.                                                                                                              | - P42, 43                   |
| Joint<br>assemblies | CVJ with<br>shaft head                                             |             | РК                               |                    | An assembly consisting of a CVJ,<br>boot, and shaft head for welding a<br>steel pipe.                                                                                                            | P41                         |
|                     | Semi-finished<br>flange                                            |             | 150                              |                    | Components for mounting the CVJ to a mating shaft.                                                                                                                                               | P44, 45                     |
| Accesories          | Boot<br>Boot band                                                  |             |                                  | for long shaft     | Components for containing grease                                                                                                                                                                 | P46                         |
| Acc                 |                                                                    |             |                                  | for short shaft    | within the CVJ.                                                                                                                                                                                  | F 40                        |
|                     | Small hexagon nut<br>Spring washer<br>Small hexagon<br>headed bolt |             |                                  |                    | Components for fastening the CVJ to the mounting flanged hub.                                                                                                                                    | P47                         |

# **CVJ** number

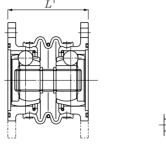
Ex. 1

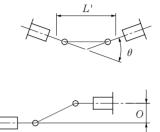

Ex. 2

Ex. 3

**BC68AC P201** A CVJ with basic number BC68; P201 series Series symbol Joint basic number **BC68AC P2100** A CVJ with basic number BC68; P201 series, complete with accessories Series symbol (bolts, nuts and washers) Joint basic number BC68 PFP 1000 H - High speed A CVJ with basic number BC68; PFP series, high speed, and L=1,000 - Joint length - Series symbol - Joint basic number

# Coupling Type (No semi-finished flange)


# PB (PB···H) and PP (PP···H) series (BC68 – 200)



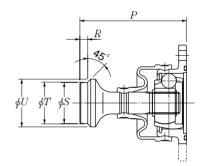

| Dimensional                      |                       |                                   | 0                                | uter race                          |         |          | Boot                               |                    | Shaft |              |                    |                                |           | Joint length            |     |                                                                                                                            | Necessary | Allowable |
|----------------------------------|-----------------------|-----------------------------------|----------------------------------|------------------------------------|---------|----------|------------------------------------|--------------------|-------|--------------|--------------------|--------------------------------|-----------|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| data<br>Joint<br>basic<br>number | Outside<br>dia.<br>¢A | Bolt<br>Pitch<br>dia.<br>$\phi B$ | hole<br>Hole<br>dia.<br>$\phi h$ | Socket dia.<br>$\phi C$            | Wi<br>F | dth<br>G | Outside<br>dia.<br>φD<br>(approx.) | РВ…Н<br><i>ф.J</i> | PΒ    | PP<br>PP···H | CVJ<br>center<br>E | PB<br>Upper line<br>Lower line |           | PP, PP···H<br>Min.–Max. | L'  | $\begin{array}{c} \mbox{Allowable} \\ \mbox{range of} \\ L\left(L'\right), \\ \mbox{when} \\ \mbox{installed} \end{array}$ | under-cut |           |
| BC68                             | 105                   | 86                                | 8.2                              | 55 <sup>+0.074</sup>               | 7       | 2.5      | 72                                 | 22                 | 25    |              | 16                 | 185–<br>610                    | 130–<br>) | 200–2800                | 72  | +4                                                                                                                         | 3         | 3.5       |
| BC75                             | 118                   | 97                                | 10.2                             | 62 <sup>+0.074</sup>               | 8       |          | 78                                 | 22.3               | 25    | 48.6         | 18                 | 205–<br>660                    | 145–<br>) | 230–2800                | 82  | 0                                                                                                                          |           | 4         |
| BC87                             | 134                   | 110                               | 12.2                             | 70 <sup>+0.074</sup>               | 10      | 3        | 90                                 | 26.3               | 30    |              | 20                 | 215–<br>715                    | 155–<br>5 | 245–3000                | 94  |                                                                                                                            | 4.5       | 5         |
| BC100                            | 152                   | 125                               | 14.3                             | 80 <sup>+0.074</sup> <sub>0</sub>  | 11      |          | 100                                | 29.5               | 32    | 60.5         | 23                 | 250–<br>770                    | 195–<br>) | 280–3200                | 108 | +8<br>0                                                                                                                    |           | 5         |
| BC125                            | 177                   | 150                               | 14.3                             | 102 <sup>+0.087</sup> <sub>0</sub> | 11      | 3.5      | 124                                | 36.3               | 40    | 00.5         | 28                 | 305–<br>815                    | 235–<br>5 | 310–3200                | 130 |                                                                                                                            | 7         | 7         |
| BC150                            | 215                   | 185                               | 16.4                             | 124 <sup>+0.100</sup>              | 13      | 4        | 154                                | 45.6               | 50    | 76.3         | 35                 | 335–<br>825                    | 275–<br>5 | 370–3500                | 156 |                                                                                                                            | 6.5       | 8         |
| BC175                            | 236                   | 203                               | 18.4                             | 140 +0.100 0                       | 15      | 5        | 175                                | 51.6               | 55    | 89.1         | 38                 | 380–<br>825                    | 315–<br>5 | 470–4000                | 180 | +10<br>0                                                                                                                   | 8         | 9         |
| BC200                            | 270                   | 233                               | 20.4                             | 165 <sup>+0.100</sup>              | 15      | 6        | 200                                | 59.5               | 65    | 101.6        | 45                 | 430–<br>835                    | 360-<br>5 | 545-4000                | 216 |                                                                                                                            | 7         | 11.5      |

Various joint lengths are available in increments of 5 mm within a range from a minimum to a maximum in the table.
 Remarks: A joint provided with standard bolts, nuts and spring washers is identified with Z at the end of its part designation. (Ex.) BC68PB315Z

# P201 series (BC68AC - 200AC)






# Joint Assemblies with Shaft Head PK Series PK series (BC68 – 200)

The **PK** joints are components of **DP** series joint assemblies. One **PK** joint assembly are welded to a segment of steel pipe before operation of the unit. Two disc type CVJ assemblies, shaft heads, boots, grease, and associated accessories are delivered unassembled.

#### Assembly sequence

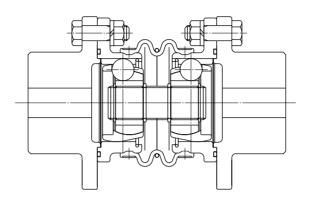
- 1. Weld the steel pipe to the shaft heads. (See page 51.)
- 2. Lubricate the joint assemblies with the authorized **NTN** constant velocity joint grease provided.
- 3. Install the accessories. (See pages 59 and 60.) Material of shaft head: SCM440 Recommended steel pipe material: STKM13 or STPG 370

or equivalent



|                                     |          | Shaft    | head            |    |                                        | Allowable                       |            |            |      | GD             | <sup>2</sup> × 10 <sup>-</sup> | <sup>3</sup> kg ∙ n | n <sup>2</sup> (left c | olumn) | , Mass     | s kg (rig   | ht colur | nn)  |      |      |
|-------------------------------------|----------|----------|-----------------|----|----------------------------------------|---------------------------------|------------|------------|------|----------------|--------------------------------|---------------------|------------------------|--------|------------|-------------|----------|------|------|------|
| Outsic                              | de dia.  |          | Standard<br>Ler |    | Tolerance of <i>P</i> , when installed | Allowable<br>operating<br>angle |            | Ρ          |      |                |                                | PB                  |                        |        |            |             | ₽₽…Н     |      | P2   | :01  |
| $\phi S$                            | $\phi T$ | $\phi U$ | Р               | R  | to the machine                         | θ                               | Wł<br>L=50 | nen<br>Omm |      | ditional<br>mm |                                | nen<br>I0mm         | Per ad<br>100          |        | Wł<br>L=50 | nen<br>I0mm | Per ad   |      |      |      |
|                                     |          |          | 92.5            |    | +2                                     |                                 | 4.48       | 2.79       | 0.12 | 0.39           | 4.29                           | 2.44                | 0.07                   | 0.30   | 7.38       | 3.55        |          |      | 3.85 | 1.4  |
| 41.6 <sup>+0.062</sup> <sub>0</sub> | 42.6     | 48.6     | 109             | 8  | 0                                      |                                 | 6.28       | 3.39       | 0.12 | 0.03           | 6.14                           | 3.11                | 0.08                   | 0.31   | 9.03       | 4.19        | 0.96     | 0.49 | 5.79 | 1.9  |
|                                     |          |          | 115             |    |                                        |                                 | 13.3       | 4.92       | 0.25 | 0.56           | 12.9                           | 4.49                | 0.15                   | 0.43   | 15.6       | 5.13        |          |      | 12.3 | 2.9  |
| 51.7 +0.074                         | 53       | 60.5     | 128             | 10 | +4<br>0                                | 5°                              | 23.2       | 6.15       | 0.32 | 0.63           | 22.9                           | 5.87                | 0.22                   | 0.54   | 29.1       | 7.18        | 2.1      | 0.75 | 21.8 | 4.4  |
| 51.7 0                              | 55       | 00.5     | 150.5           | 10 |                                        | 5                               | 57.4       | 10.4       | 0.79 | 0.99           | 56.7                           | 9.58                | 0.54                   | 0.81   | 62.0       | 10.7        | 2.1      | 0.75 | 54.3 | 7.3  |
| 66 <sup>+0.074</sup>                | 67       | 76.3     | 179             |    |                                        |                                 | 148        | 17.5       | 1.93 | 1.54           | 147                            | 16.9                | 1.33                   | 1.28   | 161        | 18.6        | 5.2      | 1.04 | 140  | 13.4 |
| 79.5 <sup>+0.074</sup>              | 81.5     | 89.1     | 208             | 15 | +5<br>0                                |                                 | 371        | 28.0       | 2.80 | 1.87           | 370                            | 27.5                | 2.18                   | 1.64   | 387        | 30.6        | 8.5      | 1.34 | 361  | 24.5 |
| 87 <sup>+0.087</sup> <sub>0</sub>   | 90       | 101.6    | 227             |    |                                        |                                 | 585        | 43.9       | 5.50 | 2.60           | 582                            | 43.2                | 3.87                   | 2.18   | 613        | 47.6        | 17.8     | 2.26 | 571  | 36.2 |

Dimensional unit mm


# PFB (PFB···H) and PFP (PFP···H) series (BC68 – 200)



Dimensional unit mm

| Dimensional         |        |        |             | GD        | $^{2}$ $	imes$ 10 <sup>-3</sup> kg $\cdot$ | m <sup>2</sup> (left colu | mn), Mass I | kg (right colu | mn)     |        |             |           |
|---------------------|--------|--------|-------------|-----------|--------------------------------------------|---------------------------|-------------|----------------|---------|--------|-------------|-----------|
| data<br>Joint basic |        | PI     | FB          |           |                                            | PFE                       | 3…H         |                |         | PFP, P | FP…H        |           |
| number              | When L | =500mm | Per additio | nal 100mm | When L                                     | =500mm                    | Per additio | nal 100mm      | When L: | =500mm | Per additio | nal 100mm |
| BC68                | 14.2   | 5.25   | 0.12        | 0.39      | 14.0                                       | 4.90                      | 0.07        | 0.30           | 17.0    | 6.01   |             |           |
| BC75                | 26.7   | 7.47   | 0.12        | 0.59      | 26.6                                       | 7.19                      | 0.08        | 0.31           | 29.5    | 8.27   | 0.96        | 0.49      |
| BC87                | 52.9   | 11.1   | 0.25        | 0.56      | 52.5                                       | 10.4                      | 0.15        | 0.43           | 55.2    | 11.1   |             |           |
| BC100               | 102    | 14.8   | 0.32        | 0.63      | 102                                        | 14.5                      | 0.22        | 0.54           | 108     | 15.8   | 2.1         | 0.75      |
| BC125               | 227    | 24.2   | 0.79        | 0.99      | 226                                        | 23.4                      | 0.54        | 0.81           | 232     | 24.5   | 2.1         | 0.75      |
| BC150               | 563    | 41.8   | 1.93        | 1.54      | 562                                        | 41.2                      | 1.33        | 1.28           | 576     | 42.9   | 5.2         | 1.04      |
| BC175               | 1128   | 64.4   | 2.80        | 1.87      | 1127                                       | 63.9                      | 2.18        | 1.64           | 1130    | 67.0   | 8.5         | 1.34      |
| BC200               | 2041   | 101    | 5.50        | 2.60      | 2038                                       | 100                       | 3.87        | 2.18           | 2068    | 105    | 17.8        | 2.26      |

P601 series (BC68AC-200AC)



| Dimensional<br>data<br>Joint basic | P6                                                | 01      |
|------------------------------------|---------------------------------------------------|---------|
| number                             | $GD^2 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ | Mass kg |
| BC68                               | 14.1                                              | 3.9     |
| BC75                               | 26.0                                              | 5.9     |
| BC87                               | 51.5                                              | 8.5     |
| BC100                              | 99.7                                              | 13.1    |
| BC125                              | 223                                               | 21.2    |
| BC150                              | 553                                               | 37.8    |
| BC175                              | 1118                                              | 62.8    |
| BC200                              | 2025                                              | 95      |

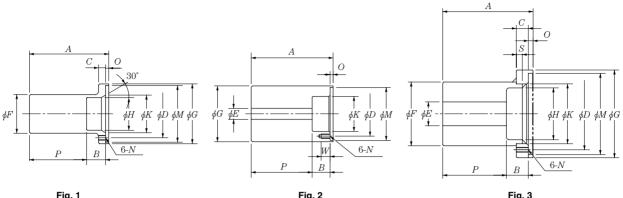


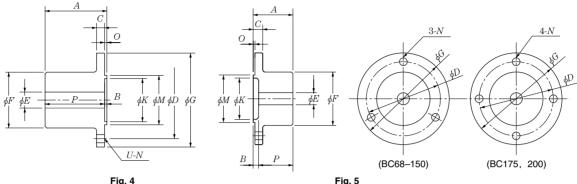

Fig. 1 Disc (BJ75-150) 201, 202 series

Fig. 2 Disc (BJ75-150) 204, 205 series

Fig. 3 Disc (BJ75-300) 201, 202 series

| Applicable |                                   |                         |        |                              |      | Wi       | dth  |            | Outsi    | de dia. |     | Socket      |   |
|------------|-----------------------------------|-------------------------|--------|------------------------------|------|----------|------|------------|----------|---------|-----|-------------|---|
| joint      | Тур                               | e                       | Figure | Parts number                 | A    | В        | C    | Р          | $\phi F$ | φ G     | 9   | b M         |   |
| BC68       | Coupling type                     |                         | 5      | 50-150#BC68                  | 40   | 5        | 9    | 35         | 60       | 107     | 55  | 0<br>-0.046 |   |
|            |                                   | Fixed side              | 1 -    | 50-201#BJ75                  | - 91 | 12       | 12   | 74         | 55       |         |     |             |   |
|            | Disc type                         | Free side               | '      | 50-202#BJ75                  |      | 24       | 12   | 62         |          | 85      | 80  | +0.046      |   |
| BJ75       | Disc type                         | Fixed side              | 2      | 50-204#BJ75                  | 121  | 12       |      | 104        | _        | 05      | 00  | 0           |   |
| 2010       |                                   | Free side               | 2      | 50-205#BJ75                  | 121  | 24       |      | 92         |          |         |     |             |   |
|            | Cup type                          |                         | 4      | 50-400#BJ75                  | 77   | 2.5      | 10   | 74.5       | 70       | 118     | 62  | 0           |   |
| BC75       |                                   |                         | 5 -    | 50-150#BC75                  | 52   | 7        |      | 45         | 70       | 120     | 02  | -0.046      | 2 |
| BC87       | <ul> <li>Coupling type</li> </ul> |                         | 5      | 50-150#BC87                  | 57   | '        | 10   | 50         | 80       | 136     | 70  | 0<br>-0.046 |   |
|            |                                   | Fixed side              | 1 -    | 50-201#BJ95                  | 133  | 16       | 12   | 112        | 6F       |         |     |             |   |
|            | Disc type                         | Free side               |        | 50-202#BJ95                  | 133  | 32       |      | 96         | 65       | 100     | 95  | +0.054      |   |
| BJ95       | Disc type                         | Fixed side              | 2      | 50-204#BJ95                  | 147  | 16       |      | 126        |          | 100     | 95  | 0           | ' |
| D095       |                                   | Free side               | 2      | 50-205#BJ95                  | 147  | 32       |      | 110        |          |         |     |             |   |
|            | 0                                 |                         |        | 50-400#BJ95                  | 82   | 2.5      | 12   | 79.5       | 80       | 136     | 70  | 0<br>-0.046 |   |
| BJ100      | Cup type                          |                         | 4 –    | 50-400#BJ100                 | 97   | 2.5      | 15   | 94.5       | 90       | 154     |     | 0           | 2 |
| BC100      | Coupling type                     |                         | 5      | 50-150#BC100                 | 67   | 7        | 15   | 60         | 90       | 154     | 80  | -0.046      |   |
|            |                                   | Fixed side              | 1 -    | 50-201#BJ125                 | 155  | 20       | 15   | 130        | 90       |         |     |             |   |
|            | Disc type                         | Free side               | 1      | 50-202#BJ125                 | 155  | 40       |      | 110        |          | 130     | 125 | +0.063      |   |
| BJ125      | Disc type                         | Fixed side              | 2      | 50-204#BJ125                 | 175  | 20       |      | 150        | _        | 130     | 125 | 0           |   |
| DJ125      |                                   | Free side               | 2      | 50-205#BJ125                 | 175  | 40       |      | 130        |          |         |     |             |   |
|            | Cup type                          |                         | 4      | 50-400#BJ125                 | 115  | 3        | 15   | 112        | 110      | 170     | 100 | 0           |   |
| BC125      | Coupling type                     |                         | 5      | 50-150#BC125                 | 80   | 10       | 15   | 70         | 110      | 179     | 102 | -0.054      |   |
|            |                                   | Fixed side<br>Free side | 1 -    | 50-201#BJ150<br>50-202#BJ150 | 178  | 24<br>48 | 18   | 148<br>124 | 105      |         |     | +0.063      |   |
|            | Disc type                         | Fixed side              | _      | 50-204#BJ150                 |      | 24       |      | 164        |          | 152     | 146 | 0           |   |
| BJ150      |                                   | Free side               | 2 -    | 50-205#BJ150                 | 194  | 48       | 1 —  | 140        | -        |         |     |             |   |
|            | Cup type                          |                         | 4      | 50-800#BJ150                 | 123  | 3        | 12   | 120        | 125      | 192     | 110 | 0<br>-0.054 |   |
| BC150      | Coupling type                     |                         | 5      | 50-150#BC150                 | 90   | 10       | 17   | 80         | 140      | 217     | 124 | 0           | 3 |
|            | Disc type                         | Fixed side              | 3 -    | 50-201#BJ175                 | 192  | 34<br>54 | 26   | 150        | 120      | 175     | 1   | 59          |   |
| BJ175      | Cup type                          | Free side               | 4      | 50-202#BJ175<br>50-800#BJ175 | 139  | 54<br>4  | 15   | 130<br>135 | 140      | 215     | 125 | 0<br>-0.063 |   |
| BC175      | Coupling type                     |                         | 5      | 50-150#BC175                 | 112  | 12       | 19   | 100        | 160      | 238     | 140 | 0 -0.063    |   |
|            | Disc type                         | Fixed side              | 3 -    | 50-201#BJ200                 | 215  | 35       | 28   | 170        | 140      | 200     |     | -0.063      | 1 |
| BJ200      | Cup type                          | Free side               | 4      | 50-202#BJ200<br>50-800#BJ200 | 154  | 55<br>4  | 16   | 150<br>150 | 160      | 250     | 140 | 0           |   |
|            |                                   |                         |        |                              |      |          |      |            |          |         |     | -0.063      |   |
| BC200      | Coupling type                     | Fixed side              | 5      | 50-150#BC200<br>50-201#BJ225 | 132  | 12<br>35 | 19   | 120<br>180 | 185      | 272     | 165 | -0.063      |   |
| BJ225      | Disc type                         | Free side               | 3      | 50-202#BJ225                 | 227  | 55       | 30   | 160        | 160      | 220     |     | 204         | 1 |
|            | Cup type                          |                         | 4      | 50-800#BJ225                 | 169  | 4        | 18   | 165        | 175      | 265     | 155 | 0<br>-0.063 |   |
| BJ250      | Disc type                         | Fixed side<br>Free side | 3      | 50-201#BJ250<br>50-202#BJ250 | 240  | 38<br>58 | 34   | 190<br>170 | 180      | 245     | 2   | 222         |   |
| BJ300      | Disc type                         | Fixed side              |        | 50-201#BJ300                 | 262  | 45       | 38   | 205        | 205      | 275     | -   | 256         | 1 |
| 00000      |                                   | Free side               |        | 50-202#BJ300                 | 202  | 70       | 1 30 | 180        | _ ∠UD    | 2/0     | 2   |             | 1 |

Prepared hole diameter.
 Remarks: 1. Upon request from the user, NTN will machine the inside diameter and width according to the shaft to be installed. Contact NTN Engineering.



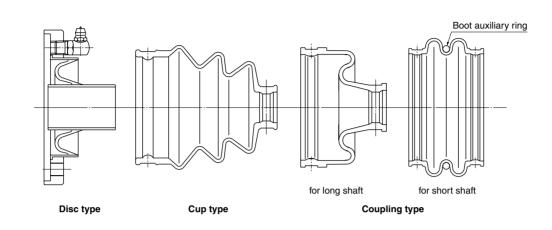
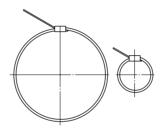


Fig. 4 Cup (BJ75–225) 400, 800 series

Fig. 5 Coupling (BC68–200) 150 series


| <table-container>IDSIGNATION INTROPORTINGGP × 10°Mage\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           |          |    |           |           |                    |    | Dimensional                       | unit mm |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|----|-----------|-----------|--------------------|----|-----------------------------------|---------|
| 04886±0.15\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Insid     | e dia.   |    |           | Bolt hole | e ,                |    | GD <sup>2</sup> ×10 <sup>-3</sup> | Mass    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | φE ● | $\phi  H$ | $\phi K$ | S  | $\phi D$  | U         | N                  | W  | kg · m²                           | kg      |
| $ \begin{array}{ c c c c c } \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0    | —         | 48       |    | 86±0.15   |           | φ <b>8</b> .2      |    | 4.68                              | 1.2     |
| $ \begin{array}{ c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 45        |          | 1  |           | 1         |                    | _  | 3.96                              | 1.76    |
| $ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _    | 45        | 50       |    | 66 - 0 15 |           | MO                 |    | 3.80                              | 1.62    |
| $ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           | 50       |    | 00±0.15   |           | IVIO               | 16 | 18.4                              | 4.97    |
| 010.62.80062110±0.1541.029.41.29.042.00-556380±0.241.229.733.430-7280±0.2110±0.1541.227.9630-72110±0.15341.36.1330-70110±0.15341.36.1330-70110±0.15341.36.1330-70125±0.15110±0.241.36.1331106±0.2-1101414.7106±0.2041.36.8536.66.8548-90.410.236.66.8535-90150±0.2341.414.7100±0.2150±0.26\$14.311.979.510.858-90165±0.26\$14.311.979.510.86011012139.7±0.26\$18.411.912.9124229221.3165±0.26\$11.415.315.9±0.26\$18.415.914.415.940-125139.7±0.2-\$18.4\$19.912.513.120.450-125-23.5±0.26\$18.4\$19.931.120.450-14518.9±0.2-\$18.4\$19.2\$14.415.331.120.450-< | 0    |           |          |    |           |           |                    | 10 | 18.2                              | 4.78    |
| $ \begin{array}{ c c c c c c } \hline \ 0 \\ \hline \ 62 \\ \hline \ 62 \\ \hline \ 62 \\ \hline \ \ 62 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                          | 0    | _         | 54       |    | 97±0.15   | 3         | d 10.2             |    | 10.6                              | 2.80    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |           |          | -  |           | _         | <i>r</i> · · · · · | _  | 9.04                              | 2.0     |
| $ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           | 62       |    | 110±0.15  |           | φ 12.2             |    |                                   |         |
| $ \begin{array}{ c c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _    | 55        |          |    |           |           |                    |    |                                   |         |
| $ \begin{array}{ c c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |           | 63       |    | 80+0.2    |           | M8                 |    |                                   |         |
| $ \begin{array}{ c c c c c c c } 0 & - & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |           |          |    |           |           |                    | 16 |                                   |         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |           |          | -  |           |           |                    |    | 42.2                              | 7.96    |
| $ \begin{array}{ c c c c c c c } \hline 0 & \hline 72 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | _         | 62       | -  | 110±0.15  | - 3       | φ 12.2             |    | 20.8                              | 4.02    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    |           | 72       | -  | 125±0.15  |           | - ø 14.3           | _  | 41.3                              | 6.13    |
| $ \begin{array}{ c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30   |           | 70       |    |           |           | 7                  |    |                                   |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _    | 75        |          |    |           | _         |                    |    |                                   |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           | 80       |    | 106±0.2   |           | M10                |    |                                   |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48   |           |          |    |           |           |                    | 20 |                                   |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |           |          | -  |           |           |                    |    | 140                               | 14.3    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    | _         | 90       |    | 150±0.2   | 3         | φ <b>14.3</b>      |    | 90.4                              | 10.2    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35   |           |          | -  |           | _         |                    | —  |                                   |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _    | 85        |          |    |           | _         |                    |    |                                   |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           | 96       |    | 124±0.2   |           | M12                |    |                                   |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58   |           |          |    |           |           |                    | 24 |                                   |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          | -  |           |           |                    |    | 292                               | 21.3    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | —         | 95       | -  | 165±0.2   | 6         | ¢ 14.3             |    | 128                               | 11.9    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40   |           |          |    | 185±0.2   |           | φ 16.4             |    |                                   |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 95        | 110      | 12 | 139.7±0.2 |           | M14                |    |                                   |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |          |    |           |           |                    |    | 159                               | 14.4    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40   | _         |          | _  | 185±0.2   | 6         | φ <b>17</b>        |    | 236                               | 17.4    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50   |           | 125      |    | 203±0.2   |           | φ <b>18.4</b>      |    |                                   |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60   | 110       | 130      | 13 | 159±0.2   |           | M12                | _  |                                   |         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50   | _         | 125      | _  | 215±0.2   | 6         | φ 19               |    | 452                               | 24.9    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60   |           | 145      |    | 233±0.2   |           | φ 20.4             |    | 675                               | 28      |
| 50       -       135       -       228 $\pm$ 0.2       6 $\phi$ 21       683       32.9         70       138       160       16       197 $\pm$ 0.2       -       M16       933       40.9         912       39.1       1690       57.1       57.1                                                                                                                                                                                                                                                                                                              | 00   | 130       | 150      | 15 | 180+0.2   |           | M12                |    | 542                               | 30.0    |
| 70         138         160         16         197±0.2         933         40.9         933         40.9         912         39.1         160         16         197±0.2         M16         M16         1690         57.1                                                                                                                                                                                                                                                                                                                                       |      | 100       | 100      |    | 100 - 0.2 |           | 1112               |    | 514                               | 28.3    |
| 70         138         160         16         197±0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50   | _         | 135      | -  | 228±0.2   | 6         | φ 21               |    |                                   |         |
| 80 155 180 18 225 4±0 2 M16 912 39.1<br>1690 57.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70   | 138       | 160      | 16 | 197±0.2   |           |                    |    |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |           |          |    |           |           | M16                |    |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80   | 155       | 180      | 18 | 225.4±0.2 |           |                    |    | 1690                              | 57.1    |

# Accesories

# Boot



# **Boot Band**

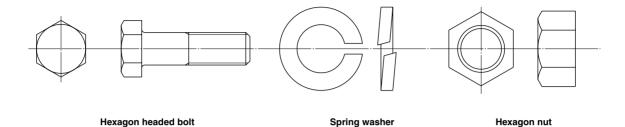


#### For cup, coupling

| Applicable | <b>T</b>      |             |             |                     |                     | Parts number      |                   |                     |              |
|------------|---------------|-------------|-------------|---------------------|---------------------|-------------------|-------------------|---------------------|--------------|
| joint      | Ту            |             | Boot        | Boot retainer plate | Boot retainer plate | Boot band (large) | Boot band (small) | Boot auxiliary ring | Set 🔍        |
| BC68       | Coupling type | Short shaft | 17-11#BC68  | _                   | _                   | 20-1#             |                   | 98-4#BJ68           | 99-120#BJ68  |
|            |               | Long shaft  | 17-31#BJ68  |                     |                     | 20-1#BJ75         | 20-2#BJ75         |                     | 99-17#BJ68   |
| BJ75       | Disc          | type        | 18-1#BJ75   | 19-1#BJ75           | 24-3#BJ75           | _                 | _                 |                     | 99-301#BJ75  |
| 0075       | Cup 1         |             | 17-41#BJ75  |                     |                     | 20-1#BJ75         | 20-2#BJ75         |                     | 99-102#BJ75  |
| BC75       | Coupling type | Short shaft | 17-10#BC75  |                     |                     | 20-1#             |                   | 98-5#BJ75           | 99-120#BJ75  |
| 0075       | Coupling type | Long shaft  | 17-30#BJ75  |                     |                     | 20-1#BJ75         | 20-2#BJ75         | _                   | 99-37#BJ75   |
| BC87       | Coupling type | Short shaft | 17-10#BC87  |                     |                     |                   | BJ100             | 98-7#BJ87           | 99-120#BJ87  |
| 0007       | oouping type  | Long shaft  | 17-39#BJ87  |                     |                     | 20-1#BJ100        | 20-2#BJ100        |                     | 99-27#BJ87   |
| BJ95       | Disc          | type        | 18-1#BJ95   | 19-1#BJ95           | 24-3#BJ75           | _                 | _                 |                     | 99-301#BJ95  |
|            | Cup t         |             | 17-16#BJ95  |                     |                     | 20-1#BJ100        | 20-2#BJ100        |                     | 99-15#BJ95   |
| BJ100      | Cup 1         |             | 17-4#BJ100  | _                   |                     | 20-1#BJ100        | 20-2#BJ100        |                     | 99-16#BJ100  |
| BC100      | Coupling type | Short shaft | 17-10#BC100 |                     |                     | 20-1#             | BJ100             | 98-7#BJ100          | 99-120#BJ100 |
| BC100      | Coupling type | Long shaft  | 17-21#BJ100 |                     |                     | 20-1#BJ100        | 20-2#BJ100        |                     | 99-17#BJ100  |
| BJ125      | Disc          |             | 18-1#BJ125  | 19-1#BJ125          | 24-3#BJ75           | -                 | _                 |                     | 99-301#BJ125 |
| 00125      | Cup t         |             | 17-15#BJ125 |                     |                     | 20-1#BJ150        | 20-2#BJ150        |                     | 99-16#BJ125  |
| BC125      | Coupling type | Short shaft | 17-10#BC125 |                     |                     | 20-1#             | BJ150             | 98-16#BJ125         | 99-30#BJ125  |
| 00125      | oouping type  | Long shaft  | 17-19#BJ125 |                     |                     | 20-1#BJ150        | 20-2#BJ150        |                     | 99-17#BJ125  |
| BJ150      | Disc          |             | 18-1#BJ150  | 19-1#BJ150          | 24-3#BJ75           | _                 | _                 |                     | 99-301#BJ150 |
| 00130      | Cup t         |             | 17-4#BJ150  |                     |                     | 20-1#BJ150        | 20-2#BJ150        |                     | 99-16#BJ150  |
| BC150      | Coupling type | Short shaft | 17-10#BC150 |                     | -                   |                   | BJ150             | 98-8#BJ150          | 99-30#BJ150  |
| 00130      | oouping type  | Long shaft  | 17-6#BJ150  |                     |                     | 20-1#BJ150        | 20-2#BJ150        |                     | 99-17#BJ150  |
| BJ175      | Disc          |             | 18-1#BJ175  | 19-1#BJ175          | 24-3#BJ75           | _                 | -                 |                     | 99-301#BJ175 |
| 00175      | Cup t         |             | 17-7#BJ175  |                     |                     | 20-2#BJ550        | 20-2#BJ225        |                     | 99-28#BJ175  |
| BC175      | Coupling type | Short shaft | 17-10#BC175 |                     |                     |                   | BJ250             | 98-21#BJ175         | 99-30#BJ175  |
| 00175      | oouping type  | Long shaft  | 17-5#BJ175  |                     |                     | 20-3#BJ250        | 20-2#BJ350        |                     | 99-27#BJ175  |
| BJ200      | Disc          | type        | 18-1#BJ200  | 19-1#BJ200          | 24-3#BJ75           | _                 | _                 | ] —                 | 99-301#BJ200 |
| B3200      | Cup 1         |             | 17-3#BJ200  |                     |                     | 20-1#BJ225        | 20-2#BJ225        |                     | 99-3#BJ200   |
| BC200      | Coupling type | Short shaft | 17-10#BC200 |                     | -                   | 20-1#             |                   | 98-16#BJ200         | 99-30#BJ200  |
| BC200      | Coupling type | Long shaft  | 17-1#BJ200  |                     |                     | 20-1#BJ400        | 20-2#BJ350        |                     | 99-17#BJ200  |
| BJ225      | Disc          | type        | 18-1#BJ225  | 19-1#BJ225          | 24-3#BJ75           |                   |                   | ]                   | 99-301#BJ225 |
| DJZZO      | Cup t         | type        | 17-1#BJ225  | _                   | _                   | 20-1#BJ225        | 20-2#BJ225        | -                   | 99-16#BJ225  |
| BJ250      | Disc          | type        | 18-1#BJ250  | 19-1#BJ250          | 24-3#BJ75           | _                 | _                 | ]                   | 99-301#BJ250 |
| BJ300      | Disc          | type        | 18-1#BJ300  | 19-1#BJ300          | 24-3#BJ75           |                   |                   |                     | 99-301#BJ300 |
|            |               |             |             |                     |                     |                   |                   |                     |              |

• The set for disc comprises an assembly that consists of one boot, one boot fixing plate, and two grease nipples.

The set for cup comprises one boot, one boot band (large) and one boot band (small).


The short shaft set for coupling comprises one boot, one auxiliary ring and two boot bands.

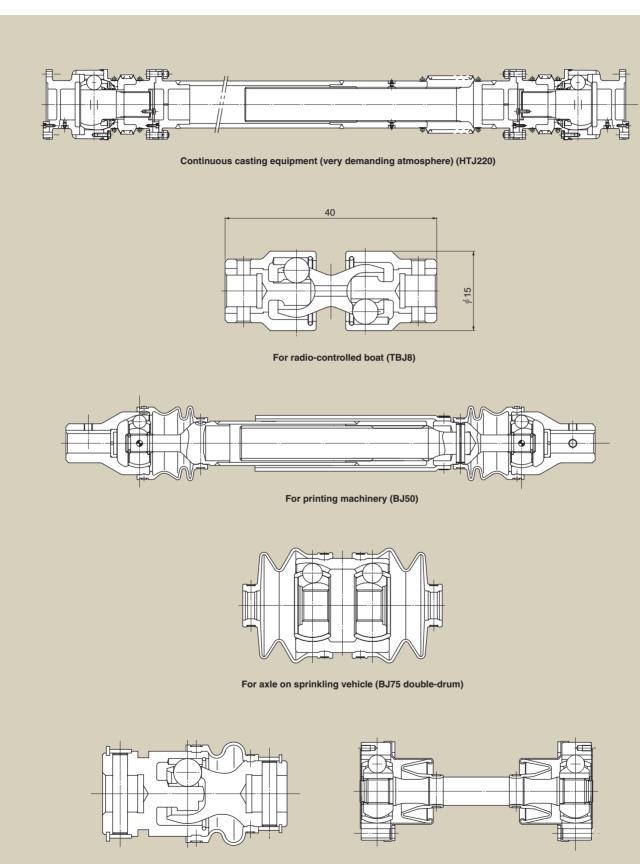
The long shaft set comprises one boot, one boot band (large) and one boot band (small). Remarks: Depending on an applicable joint number, the form of boot can differ from an illustrated one.

When fastening a boot band, use a special fastening tool. For the form and part description of the tool, see page 60.

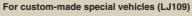
www.alacam.com.tr

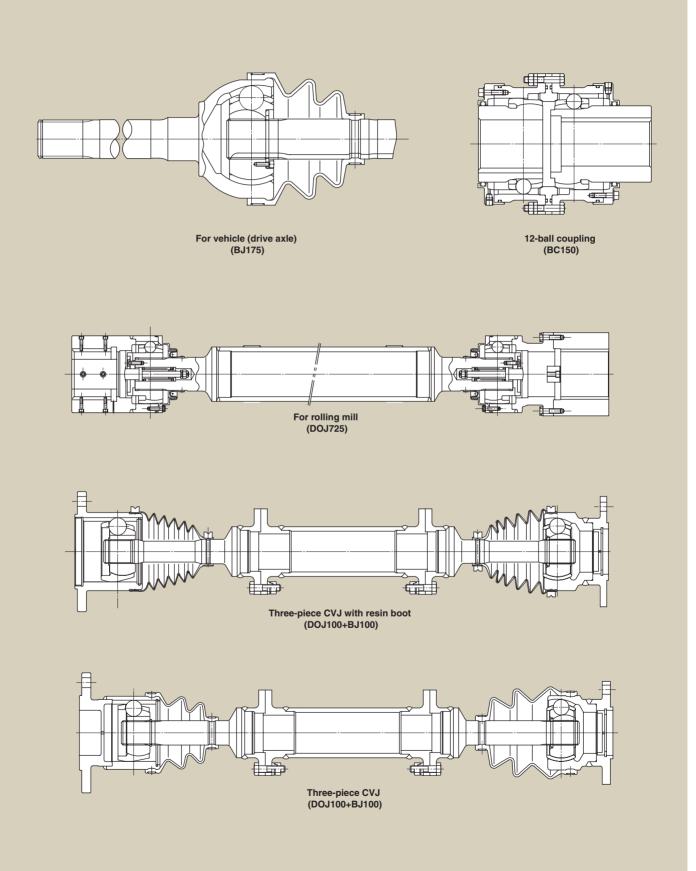
# Hexagon Headed Bolt/Spring Washer/Hexagon Nut




| Applicable | Turne         |                           |                     | Parts r            | umber         |             |             |
|------------|---------------|---------------------------|---------------------|--------------------|---------------|-------------|-------------|
| joint      | Туре          | Small hexagon headed bolt | Hexagon headed bolt | Spring washer (#2) | Spring washer | Hexagon nut | Set 🔍       |
| BC68       | Coupling type | 51-5#BJ68                 |                     | 57 10#D 175        | 52-5#BJ75     |             | 99-22#BJ68  |
| BJ75       | Disc type     | 51-20#BJ75                |                     | 57-10#BJ75         | _             | 1           | 99-31#BJ75  |
| BJ/5       | Cup type      | 51-23#BJ75                |                     | 57-10#BJ125        | 52-5#BJ125    |             | 99-32#BJ75  |
| BC75       | Coupling type | 51-23#BJ75                |                     | 57-10#DJ125        |               |             | 99-32#DJ75  |
| BC87       | Coupling type | 51-6#BJ87                 |                     | 57-10#BJ150        | 52-5#BJ150    |             | 99-22#BJ87  |
| BJ95       | Disc type     | 51-20#BJ95                |                     | 57-10#BJ75         |               |             | 99-21#BJ95  |
| B335       | Cup type      | 51-6#BJ87                 | _                   | 57-10#BJ150        | 52-5#BJ150    |             | 99-22#BJ87  |
| BJ100      | Cup type      | 51-6#BJ100                |                     | 57-10#BJ175        | 52-5#BJ175    | _           | 99-22#BJ100 |
| BC100      | Coupling type | 51-0#05100                |                     | 57-10#00175        | 52-5#D0175    |             | 33-22#D0100 |
| BJ125      | Disc type     | 51-20#BJ125               |                     | 57-10#BJ125        |               |             | 99-21#BJ125 |
|            | Cup type      | 51-6#BJ100                |                     | 57-10#BJ175        | 52-5#BJ175    |             | 99-22#BJ100 |
| BC125      | Coupling type |                           |                     |                    | _             |             |             |
| BJ150      | Disc type     | 51-20#BJ150               |                     | 57-10#BJ150        |               |             | 99-21#BJ150 |
|            | Cup type      | 51-6#BJ100                |                     | 57-10#BJ175        | 52-5#BJ175    |             | 99-32#BJ150 |
| BC150      | Coupling type | 51-9#BJ150                |                     | 57-10#BJ250        | 52-5#BJ250    |             | 99-22#BJ150 |
| BJ175      | Disc type     |                           | 51-20#BJ175         | 57-10#BJ175        | _             |             | 99-21#BJ175 |
| 00175      | Cup type      |                           | 51-30#BJ175         | 57-10#BJ250        |               | 52-15#BJ250 | 99-32#BJ175 |
| BC175      | Coupling type | 51-15#BJ175               | —                   | 57-10#BJ350        | 52-5#BJ350    |             | 99-22#BJ175 |
| BJ200      | Disc type     | _                         | 51-20#BJ200         | 57-10#BJ150        | _             | _           | 99-21#BJ200 |
| 00200      | Cup type      |                           | 51-13#BJ300         | 57-10#BJ350        |               | 52-15#BJ350 | 99-32#BJ200 |
| BC200      | Coupling type | 51-8#BJ200                | —                   | 57-10#BJ400        | 52-5#BJ400    |             | 99-22#BJ200 |
| BJ225      | Disc type     |                           | 51-20#BJ225         | 57-10#BJ150        |               | —           | 99-21#BJ225 |
|            | Cup type      | _                         | 51-27#BJ225         | 57-10#BJ400        | _             | 52-15#BJ400 | 99-32#BJ225 |
| BJ250      | Disc type     |                           | 51-20#BJ250         | 57-10#BJ250        |               | -           | 99-21#BJ250 |
| BJ300      | Disc type     |                           | 51-20#BJ300         | 57 TO#D0250        |               | —           | 99-21#BJ300 |

The set for disc comprises six hexagonal head bolts and six spring washers. The sets for cup comprise: Applicable joint BJ75-BJ125: six hexagonal head bolts, six spring washers, and six hexagonal nuts Applicable joint BJ150-BJ225: 12 hexagonal head bolts, 12 spring washers, and 12 hexagonal nuts The sets for coupling comprise: Applicable joint BC68-BC150: six small hexagonal head bolts, six spring washers, and six small hexagonal nuts Applicable joint BC175-BC200: eight small hexagonal head bolts, eight spring washers, and eight small hexagonal nuts


# **Diagrams of Applications**

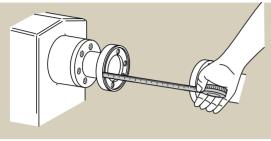

The examples below illustrate special applications not covered as standard series in our catalogs.

NTN offers an ideal constant velocity joint that is optimized for your intended machine and/or operating conditions. When wanting a constant velocity joint for a very unique application, contact NTN Engineering.



For axle on golf-cart (TBJ20)





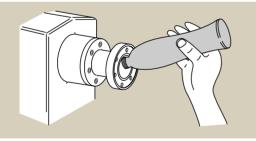

# **Usage and Handling**

# **1. Installation Procedure**

### (1) Checking the installation dimensions

Check that the mounting span on the machine coincides with the length of the constant velocity joint (see **Fig. 1**).



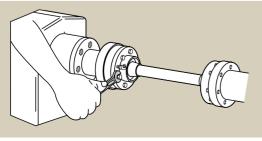



### (2) Filling the grease

Fill the grease included with the constant velocity joint to 1/2 to 1/3 as much as the undercut space capacity of the mounting flange hub (see **Fig. 2**).

# CAUTION

- The grease can cause eye inflammation to human eyes. When handling it, wear protective goggles.
- %If it has contaminated the eyes, rinse with clean water, and immediately seek medical attention.
- The grease can cause skin inflammation. When handling it, wear protective gloves.
- %If it has touched skin, wash it off thoroughly with water and soap.

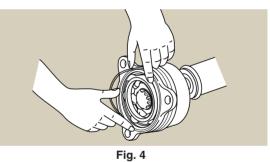





# (3) Installing the joint

Install the joint to the flange with the included bolts (see **Fig. 3**). Tighten the bolts with a torque equivalent to JIS bolt strength category 8.8. The recommended bolt tightening torques are listed in **Table 1**.

Retighten the bolts immediately after, and one month after commissioning the operation with the joint.




## (4) Cautions for installation work

- Avoid hitting the CVJ with a foreign object or exerting an impact force onto the CVJ.
- Limit the angle to the operating angle range at static state in order to avoid damage on the boot.
- Be careful not to damage or deform the boot and boot band.
- The free-side CVJ proper can be readily come off the shaft. Be careful not to allow it to be released from the shaft.
- Be sure to enclose the CVJ with a safety cover. If splash of oil, even in a smallest amount, to the surrounding is unacceptable, be sure to incorporate a cover that contains oil splash.
- In the case of a fixed disc type, the joint assembly can be easily mounted if the free side is mounted first. If the mounting span is short and mounting of the joint assembly is difficult, shift the machine as necessary. Install the packing to a correct position, being careful not to damage or deform it. While tightening the bolts, be careful not to deform the metal ring on boot.
- For a coupling type, fit the O-ring to a correct position, being careful not to damage it (see **Fig. 4**).

# DANGER

• Do not approach the running joint.



### Table 1

| Nominal bolt size | Tightening | torque | ● kgf · m |
|-------------------|------------|--------|-----------|
| M 8               | 19.6       | to     | 24.5      |
| M10               | 39.2       | to     | 49.0      |
| M12               | 73.5       | to     | 83.4      |
| M14               | 118        | to     | 127       |
| M16               | 181        | to     | 201       |
| M18               | 235        | to     | 275       |
| M20               | 353        | to     | 392       |
| M22               | 490        | to     | 539       |
| M24               | 588        | to     | 686       |
| M27               | 883        | to     | 981       |
| M30               | 1 270      | to     | 1 370     |

• Data is for bolt strength classification JIS 8.8.

# 2. Precautions for Operation

### (1) Operating environment

The seal member of constant velocity joint is composed of chloroprene rubber. Though varying depending on the operating conditions, the recommended atmospheric temperature range, as a guideline, should be -10–60°C. When intending a temperature range different from this, contact **NTN** Engineering.

Also, when intending to use the CVJ in an environment where oil, organic solvent, chemical or gas is present, contact **NTN** Engineering.

### (2) Grease leakage

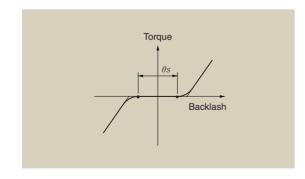
When grease has leaked from the mounting section of the CVJ or the tightening section of the boot band, replenish grease and exercise an appropriate measure, such as retightening of the bolts, and replacement of the boot band, packing and O-ring.

When replacing the boot band, be sure to use a fresh one.

## (3) Replenishing or replacing grease

When replenishing grease to the CVJ, avoid overfilling to prevent the boot from being deformed.

To replace grease, remove the old grease and fill fresh grease. After degreasing & cleaning of the joint, be sure to apply grease to the sliding surface within the joint and the splining.


Use the grease dedicated to NTN constant velocity joints. This grease is lead-free eco-friendly grease.

# (4) Backlash

The backlash ( $\theta s$ ) on NTN constant velocity joints is as defined below:

Joint with standard joined shaft (  $\theta s$ ): 40' –1°20'

Standard intermediate spline joined shaft ( $\theta s$ ): 50'-1°40' When wanting a joint of a smaller backlash, contact **NTN** Engineering.



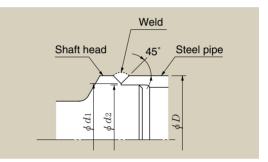
## (5) Vibration

1

Be sure to provide a difference of 30% or more relative to a characteristic vibration value of torsional vibration or flexural vibration (whirling speed).

Whirling speed N

$$N = 0.12 \times 10^9 \frac{\sqrt{d0^2 + d1^2}}{l^2} \, \text{rpm}$$


: center-to-center distance on the CVJ mm

d<sub>0</sub>, d<sub>1</sub>: outside diameter, inside diameter, of shaft (steel pipe) mm

# 3. Welding Procedure

## (1) Welding shaft head to steel pipe

1. Weld the steel pipe with the butting form shown below.



### Recommended weld dimensions with steel pipe

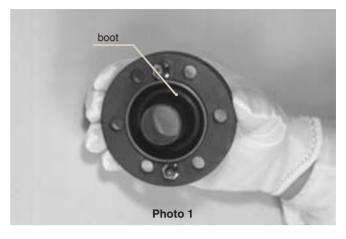
| φD            | $\phi d_1$    | $\phi d_2$                                 |
|---------------|---------------|--------------------------------------------|
| <i>φ</i> 48.6 | <i>φ</i> 42.6 | φ41.6 <sup>0</sup> <sub>-0.05</sub>        |
| <i>φ</i> 60.5 | <i>φ</i> 53   | φ51.7 <sup>0</sup><br>0.05                 |
| <i>φ</i> 76.3 | <i>φ</i> 67   | $\phi 66 \qquad {}^{0}_{-0.05}$            |
| <i></i> ∮89.1 | <i>φ</i> 81.5 | $\phi$ 79.5 $^{0}_{-0.05}$                 |
| ¢101.6        | <i></i> \$90  | φ <b>87</b> <sup>0</sup> <sub>-0.054</sub> |
| φ139.8        | φ <b>125</b>  | ∳123 <sup>0</sup><br>0.063                 |

- 2. During welding work, perform preheating and postheating.
- 3. After welding work, check the bend of shaft. TIR should be 0.5mm or less with both centers supported
- If the intended application requires only RPM, the joint assembly can be used without problem by correcting the bend on shaft. If high speed application is intended, the shaft must be corrected for optimal dynamic balance. Balance quality: JIS G 16 (guideline)

### (2) Welding material

Low hydrogen type electrode 55 kg class for high strength steel (JIS Z 3212, D 5316)

# CAUTION


Use care when welding. Take steps to insure good welding techniques.

# 4. Assembly

(1) Fixed Disc Type Fixed side CVJ

Step 1 Press-fit the boot into the boot retainer plate. (Photo 1)

Step 2 Inject NTN provided authorized grease into the boot. (Photo 2)





- Step 3 Install the boot to the shaft, and fit the squaresection circlip into the groove on the shaft **0**. (Photo 3)
- For installation procedure with the square-section circlip, see Sec. **4.5 on page 59**.

Remarks: Joint BJ175-300 lack the square-section circlip.

Step 4 Seat the packing inside the boot. (Photo 4)

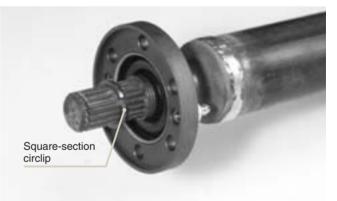
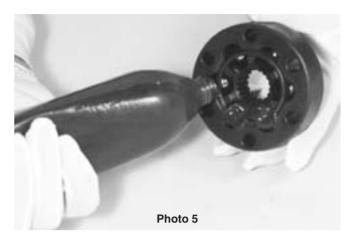
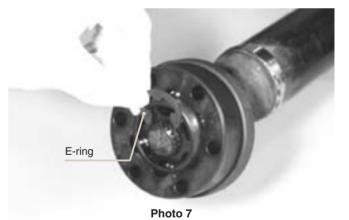



Photo 3

Photo 4




Step 5 Inject NTN provided authorized grease into the joint proper. (Photo 5)


- Step 6 Apply NTN provided authorized grease to the splines on the shaft. (Photo 6)
- Step 7 Procedure for **BJ75–150** Force the CVJ proper all the way in until it touches the circlip (see **Photo 6**), and lock it with an E-ring or C-ring. (**Photos 7 and 8**)

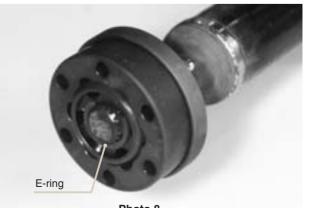
#### CAUTION

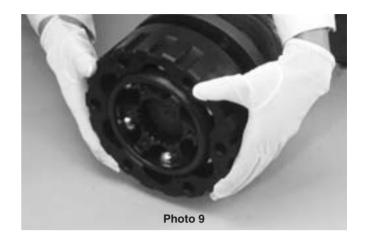
Handle the E-ring or C-ring with care. The spring force in the ring can cause it to fly off if it slips during installation.

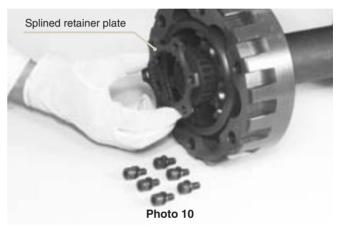




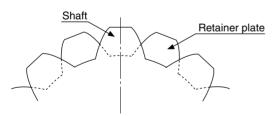






Photo 8




#### Step 7 Procedure for BJ175-300


 Orient the groove on the outer face of the outer race to the outward direction. Mount the joint assembly on the shaft until the end face of the inner race reaches the groove for retainer plate on the shaft. (Photo 9)

(2) Install the splined retainer plate so that its splines mesh with the splines on the shaft. (Photo 10)





 (3) Align the tapped holes to those on the inner race (also, align the teeth of splines on the shaft with tooth spaces on the retainer plate), then lock the retainer plate with the hexagon headed bolts.
 (Photo 11)



Step 8 Inject NTN provided authorized grease into the mounting portion on the CVJ assembly. (Photo 12)

#### Free side CVJ

For assembling the free side CVJ, observe the assembly procedure for the fixed side CVJ except for step 3 (installation of the square-section circlip) and step 7 (installation of the E-ring or locking of the retainer plate).





# (2) Fixed Cup/Drum

Fixed side CVJ

- Step 1 Place the boot bands (both large diameter and small diameter) over the shaft. (Photo 13)
- Photo 13
- Step 2 Fit the boot over the shaft. Fit the square-section circlip into the groove on the shaft **•**. (**Photo 14**) 1 For installation procedure with the square-section circlip, see Sec. 4.5 on page 59.

Step 3 Inject NTN provided authorized grease into the CVJ assembly. (Photo 15)

Step 4 Fill NTN provided authorized grease into the boot

splines on the shaft.

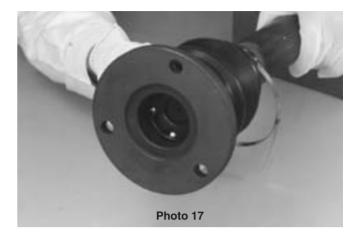
(about 1/3 to 1/2 as much as the space). (Photo 16) Apply NTN grease for constant velocity joints to the

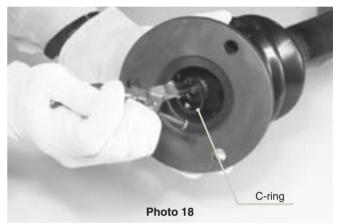









Photo 16




Step 5 Mount the CVJ assembly onto the shaft until the inner race is against the square section circlip (see **Photo 17**), and lock it with a C-ring. (**Photo 18**)

## CAUTION

Carefully handle a C-ring. The ring can fly owing to its spring force.





Step 6 Inject NTN provided authorized grease into the mounting portion on the CVJ assembly. (Photo 19)

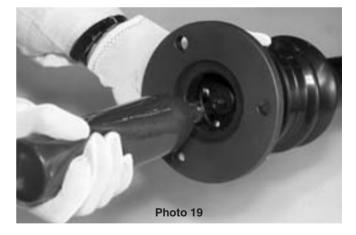





Photo 20

- Step 7 Fit the boot into the boot retaining grooves on the shaft and outer race. Fit the boot bands over the boot and fasten them<sup>①</sup>. (Photo 20)
- For fastening the boot bands, see Sec. 4.6 and 4.7 on page 60.

#### Free side CVJ

For assembling the free side CVJ, observe the assembly procedure for the fixed side CVJ except for step 2 (installation of the square-section circlip) and step 5 (installation of the C-ring).

## (3) Coupling

Step 1 Place the boot bands (both large diameter and small diameter) over the shaft, and shift them to the steel pipe side. Then, fit the boot over the shaft. (Photo 21)

- Step 2 Fit the square-section circlip into the groove on the shaft <sup>1</sup>. (Photo 22)
- 1 For installation procedure with the square-section circlip, see Sec. 4.5 on page 59.

Step 3 Inject NTN provided authorized grease into the CVJ

assembly. (Photo 23)



Photo 21



Photo 22



Step 4 Fill NTN provided authorized grease into the boot (about 1/3 to 1/2 as much as the space). (Photo 24) Apply NTN grease for constant velocity joints to the splines on the shaft.



Step 5 Mount the CVJ assembly onto the shaft until the inner race is against the square section circlip, and lock it with a C-ring. (Photo 25)

#### CAUTION

Handle the C-ring with care. The spring force in the ring can cause it to fly off if it slips during installation.

Step 6 Inject NTN provided authorized grease into the mounting portion on the CVJ assembly. (Photo 26)

Step 7 Fit the boot into the boot retaining grooves on the shaft and outer race. Fit the boot bands over the

boot and fasten them <sup>1</sup>. (Photo 27) 1 For fastening the boot bands, see Sec. 4.6 and 4.7 on

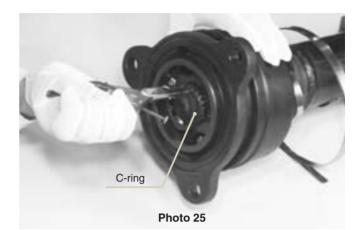
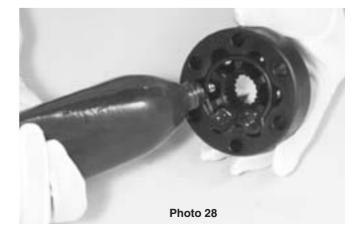




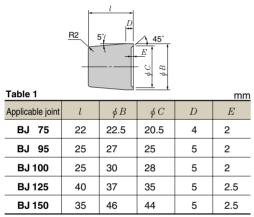

Photo 26




#### (4) CVJ Assembly (D0 series, C0 series, M0 series)

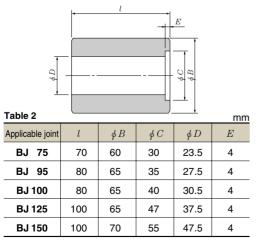
The inside of CVJ assembly is coated with Molycoat. Before using the joint, fill with NTN provided authorized grease so that it is uniformly spread within the inside of CVJ assembly. (Photo 28)

### CAUTION


page 60.

Use care when disassembling the joint assembly as there may be sharp edges, particularly on the cage ball sockets.






Remarks : The sizes of the receiver and special tools for guide must comply with the associated joint numbers (see **Fig. 1 and Fig. 2**).



#### Tool A for Square-section circlip (major dimensions)

Tool B for Square-section circlip (major dimensions)



#### WARNING

• Be sure to wear a set of protective goggles while fitting a square-section circlip.

| Р | roce | adur | 2 |
|---|------|------|---|
|   | 1000 | Fuui |   |

Step 1 Place a square-section circlip onto the receiver. (Photo 30)



Step 2 Insert the guide a special tools into the circlip. (Photo 31)



Step 3 Place the shaft into the guide a special tools and using a vinyl or wood mallet, drive the shaft into the circlip (**Photo 32**) until it is seated in the groove (**Photo 33**).





#### (6) Boot Band Fastening Jig

Photo 34 illustrates the boot band fastening jig.



Photo 34 (Part number: 98-1 #BJ150)

#### (7) Precautions for fastening boot bands

- 1) Securely fasten the boot band to avoid leakage of grease.
- 2) Carefully fasten the boot band so as not to damage or deform it.
- 3) Carefully fold the boot band fastening portion so that the lip of band does not protrude.
- 4) Handle the boot band carefully as there may be sharp edges that could cause injury.
- 5) Deforming the boot band or tightening a boot band obliquely can damage the boot. Avoid such a practice.

### CAUTION

• Wear protective gloves to avoid injury of a finger with an edge on boot band.

### 5. Storage

When storing **NTN** constant velocity joints, observe the following instructions.

- 1) Store in a clean, dry location.
- To prevent the boots from being deformed, avoid storing the assemblies in an unstable state (Fig. 1). Store them in a stable, horizontal position (Fig. 2).
- 3) Protect the boots, etc., with a cover.
- Do not stack cardboard boxes containing constant velocity assemblies. The additional weight may deform the boxes and damage to the contents may occur.
- 5) When using a constant velocity joint that has been stored for a prolonged period, elaborately inspect the state of boot and grease.

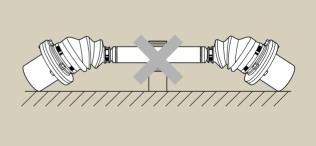
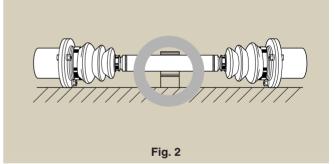




Fig. 1



#### **About Service Conditions Confirmation Sheet**

To confirm the service conditions of your joint assembly, use the "Service Conditions Confirmation Sheet" on page 61.

Select an optimal **NTN** constant velocity joint product from a range of NTN constant velocity joint series after thoroughly considering a user's intended operating conditions and intended applications.

# NTN CONSTANT VELOCITY JOINT SERVICE CONDITIONS CONFIRMATION SHEET

| Company<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | Date                                                                                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Machine                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | Area                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | Service conditions                                                                                                                                                                |  |  |
| 1. Kind of p                                                                                                                                                                                                                                                                                                                                                                                                                        | rime motor                                          | Motor       AC, DC       Output;       kW<br>HP       r/min         Engine       Gasoline<br>Diesel       No. of<br>cylinders;       Max.<br>Max.<br>torque       PS/       r/min |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Number of joints to be driven per unit           |                                                                                                                                                                                   |  |  |
| 3. Joint rota                                                                                                                                                                                                                                                                                                                                                                                                                       | tion speed                                          | Constant r/min Variable to r/min                                                                                                                                                  |  |  |
| 4. Rotating                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. Rotating direction One direction Forward/reverse |                                                                                                                                                                                   |  |  |
| 5. Transmis                                                                                                                                                                                                                                                                                                                                                                                                                         | sion torque                                         | Constant   kgf·m     Variable   Max.     to Normal   to Min.                                                                                                                      |  |  |
| 6. Shock                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     | None Approx. % against the rated torque of driving source                                                                                                                         |  |  |
| 7. Service h                                                                                                                                                                                                                                                                                                                                                                                                                        | nours                                               | 24 hrs/day constantly hrs/day Others                                                                                                                                              |  |  |
| 8. Joint installation drawing          Driving end ( )       Follower end ( )         Key groove width x depth Key groove width x depth        Image: Constraint of the stallation operation and the loading condition at that position.         If Remarks]       When the installation/operation position ( <i>L</i> and <i>X</i> , 1) changes, confirm the changed position (amount) and the loading condition at that position. |                                                     |                                                                                                                                                                                   |  |  |
| 9. Installatio                                                                                                                                                                                                                                                                                                                                                                                                                      | on direction                                        | Horizontal Vertical                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | and angle variation<br>is transmitted               | No Yes                                                                                                                                                                            |  |  |
| 11. Outside di                                                                                                                                                                                                                                                                                                                                                                                                                      | iameter limit                                       | No Yes up to mm                                                                                                                                                                   |  |  |
| 13. Kind and j                                                                                                                                                                                                                                                                                                                                                                                                                      | d atmosphere<br>joint No. of<br>currently used      | Indoor     Outdoor     Temp     °C     Others       None     Kind and joint No.                                                                                                   |  |  |
| 14. Special notes:<br>                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                                                                                                                   |  |  |

Open receiving your service conditions, NIN will recommend the best suited joint number.
 Upon receiving the user's instructions about the dimensions of mounting flange hub (inside dia. key groove dimensions, etc.), NTN will machine the hub.